Article information
2025 , Volume 30, ¹ 1, p.41-50
Pekhtereva L.V., Seleznev V.A.
Numerical analysis of the stochastic subdiffusion model
We have established that in subdiffusion models with delays, the methods of direct stochastic random walk have advantages over difference methods for numerical implementation of equivalent models in the form of integral equations or in the form of equations with fractional time derivatives. It follows from the axioms behind the random walk models. The temporal and algorithmic advantages of the stochastic method are established. It is revealed that it allows tracking the individual behavior of groups of tagged particles and comparing this behavior with the collective behavior of an ensemble of particles. For the stochastic model, a theoretical justification and experimental confirmation are given that the distribution of the residuals of the particle delay time depends on the time of their random walk. A method for determining the diffusion parameters is proposed for studying processes that are observed after the initial moment of time.
[link to elibrary.ru]
Keywords: subdiffusion, stochastic model, processes with memory, nonlinear dynamics
doi: 10.25743/ICT.2025.30.1.005
Author(s): Pekhtereva Lina Vadimovna PhD. Position: Senior Fellow Office: Novosibirsk State Technical University Address: 630073, Russia, Novosibirsk, 20, prospekt K. Marksa
E-mail: pekhtereva@corp.nstu.ru SPIN-code: 5981-7961Seleznev Vadim Alexandrovich Dr. , Professor Position: Professor Office: Novosibirsk State Technical University Address: 630073, Russia, Novosibirsk, 20, prospekt K. Marksa
E-mail: seleznev@corp.nstu.ru SPIN-code: 6185-5158 References: 1. Rudyak V.Ya. Statisticheskaya aerogidromekhanika gomogennykh i geterogennykh sred. T. 2: Gidromekhanika [Statistical aerohydromechanics of homogeneous and heterogeneous media. Vol. 2: Hydromechanics]. Novosibirsk: Novosibirskiy Gosudarstvennyy Arkhitekturno-Stroitel’nyy Universitet; 2005: 467. (In Russ.)
2. Brauchle C., Lamb D.C., Michaelis J. Single particle tracking and single molecule energy transfer. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2010: 240.
3. Nathan R., Getz W.M., Revilla E., Holyoak M., Kadmon R., Saltz D., Smouse P.E. Amovement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences of the United States of America. 2008; (105):19052–19059.
4. González M.C., Hidalgo C.A., Barabási A.L.Understanding individual human mobility patterns. Nature. 2008; 453(7196):779–782. DOI:10.1038/nature06958.
5. Cherstvy A.G., Chechkin A.V., Metzler R. Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes. New Journal of Physics. 2013; 15(8):083039. DOI:10.1088/1367-2630/15/8/083039.
6. Seleznev V.A., Pekhtereva L.V. On numerical implementations of the subdiffusion transfer process. Nauchnyi Vestnik Novosibirskogo Gosudarstvennogo Tehnicheskogo Universiteta. 2006; 4(25):155–166. (In Russ.)
7. Seleznev V.A., Pekhtereva L.V. On the numerical implementation of the integral equation of the CTRW subdiffusion model. Doklady Akademii Nauk Vysshey Shkoly Rossiyskoy Federatsii. 2008; 2(11):46–58. (In Russ.)
8. Isaeva H.V., Pekhtereva L.V. Subdiffusion on a flat lattice with particle distribution according to a given pattern. Sbornik Nauchnykh trudov Novosibirskogo Gosudarstvennogo Tekhnicheskogo Universiteta. 2009; 2(56):57–64. (In Russ.)
9. Seleznev V.A., Pekhtereva L.V., Isaeva H.V.Modelling of subdiffusion by asimptotically equivalent CTRW processes. Nauchnyy Vestnik Novosibirskogo Gosudarstvennogo Tekhnicheskogo Universiteta. 2013; 3(52):119–124. (In Russ.)
10. Pekhtereva L.V., Seleznev V.A. The Monte-Carlo method for the subdiffusion process equation with fractional time derivative. Collection of Scientific Articles Sworld. 2015; 21(1):70–78. (In Russ.)
11. SeleznevV.A., Pekhtereva L.V. The random walk method in subdiffusion modeling. Marchukovskie Nauchnye Chteniya-2017: Trudy Mezhdunarodnoy Konferentsii. Novosibirsk; 2017: 789–794. (In Russ.)
12. Pekhtereva L.V. CTRW-simulation of subdiffusion processes on fractal sets. Sbornik Nauchnykh Trudov Novosibirskogo Gosudarstvennogo Tekhnicheskogo Universiteta. 2009; 4(50):63–68. (In Russ.) Bibliography link: Pekhtereva L.V., Seleznev V.A. Numerical analysis of the stochastic subdiffusion model // Computational technologies. 2025. V. 30. ¹ 1. P. 41-50
|