Article information

2023 , Volume 28, ¹ 3, p.60-83

Medvedev S.B., Vaseva I.A., Chekhovskoy I.S., Fedoruk M.P.

On numerical algorithms for solving the direct and inverse scattering problems of the Zakharov -Shabat system

The paper presents an overview of the current numerical algorithms for implementing the inverse scattering transform (IST). The IST attracted special attention since it was proposed to use solitons as a bit of information for data transmission. Solitons are capable to compensate for nonlinear signal distortions and go beyond the limitations of linear data transmission methods. Accurate and fast numerical methods are needed to correctly describe and analyze the structure of complex multisoliton signals. Solitons are special solutions to the nonlinear Schr¨odinger equation (NLSE), which describes the propagation of pulses in an optical fiber. The IST allows one to integrate the NLSE.The paper considers methods for the direct Zakharov – Shabat (ZS) problem, which is a part of the IST. It allows calculating the nonlinear Fourier spectrum for a given potential. In particular, the paper presents the fast methods, needed for solving the problem for a large number of values of the spectral parameter. Special attention is given to the conservation property of the quadratic invariant of the ZS system. Since the integration takes place over a large area, the conservation of the quadratic invariant in computational algorithms must be exact. The paper also considers methods to restore the NLSE solution from a known nonlinear spectrum (inverse problem). Computational problems arising for a soliton spectrum are described.The methods described in the paper will be useful for more accurate and realistic calculations for the construction of telecommunication data transmission systems based on NLSE soliton solutions


Keywords: inverse scattering transform, nonlinear Schrodinger equation, Zakharov-Shabat problem, Gelfand-Levitan-Marchenko equations, nonlinear Fourier transform

doi: 10.25743/ICT.2023.28.3.005

Author(s):
Medvedev Sergey Borisovich
Dr.
Position: Leading research officer
Office: Inctitute of Computational Technologies SB RAS
Address: 630090, Russia, Novosibirsk, Ac. Lavrentyev ave., 6
Phone Office: (383) 330-73-73
E-mail: serbormed@gmail.com
SPIN-code: 2140-1726

Vaseva Irina Arkadievna
PhD.
Position: Research Scientist
Office: Institute of Computational Technologies SB RAS
Address: 630090, Russia, Novosibirsk, pr. Lavrentjeva, 6
Phone Office: (383) 330 73 73
E-mail: vaseva.irina@gmail.com

Chekhovskoy Igor Sergeevich
Position: Student
Office: Novosibirsk State University, Institute of Computational Technologies SB RAS
Address: 630090, Russia, Novosibirsk, pr. Lavrentjeva, 6
E-mail: igor428m@gmail.com

Fedoruk Mikhail Petrovich
Dr. , Academician RAS, Professor
Position: Chancellor
Office: Novosibirsk State University, Federal Research Center for Information and Computational Technologies
Address: 630090, Russia, Novosibirsk, str. Pirogova, 2
Phone Office: (3832) 349105
E-mail: mife@net.ict.nsc.ru
SPIN-code: 4929-8753

References:
1. Shabat A., Zakharov V. Exact theory of two-dimensional self-focusing and one-dimensional selfmodulation of waves in nonlinear media. Soviet Physics JETP. 1972; 34(1):62.

2. Ablowitz M.J., Segur H. Solitons and the inverse scattering transform. Society for Industrial and Applied Mathematics. Philadelphia; 1981: 438. Available at: https://www2.umbc.edu/photonics/Menyuk/Zweck/Ablowitz-Segur_1981.pdf.

3. Lamb G.L. Elements of soliton theory. Wiley; 1980: 289.

4. Yousefi M.I., Kschischang F.R. Information transmission using the nonlinear fourier transform,Part III: spectrum modulation. IEEE Transactions on Information Theory. 2014; 60(7):4346–4369.

5. Le S.T., Prilepsky J.E., Turitsyn S.K. Nonlinear inverse synthesis for high spectral efficiency transmission in optical fibers. Optics Express. 2014; 22(22):26720–26741.

6. Gui T., Lu C., Lau A.P.T., Wai P.K.A. High-order modulation on a single discrete eigenvalue for optical communications based on nonlinear Fourier transform. Optics Express. 2017;25(17):20286–20297.

7. Wahls S. Generation of time-limited signals in the nonlinear Fourier domain via b-modulation.European Conference on Optical Communication (ECOC). IEEE; 2017; 9(6):1–3.

8. Gui T., Zhou G., Lu C., Tao Lau A.P., Wahls S. Nonlinear frequency division multiplexing with b-modulation: shifting the energy barrier. Optics Express. 2018; 26(21):27978.

9. Civelli S., Turitsyn S.K., Secondini M., Prilepsky Ja.E. Polarization multiplexed nonlinear inverse synthesis with standard and reduced-complexity NFT processing. Optics Express. 2018;26(13):17360.

10. Gelash A., Agafontsev D., Zakharov V., El G., Randoux S., Suret P. Bound state soliton gas dynamics underlying the spontaneous modulational instability. Physical Review Letters. 2019;123(23):234102. DOI:10.1103/PhysRevLett.123.234102.

11. Mullyadzhanov R., Gelash A. Direct scattering transform of large wave packets. Optics Letters.2019; 44(21):5298.

12. Kashyap R. Fibre bragg gratings. Academic Press; 1999: 458.

13. Podivilov E.V., Shapiro D.A., Trubitsyn D.A. Exactly solvable profiles of quasi-rectangular bragg filter with dispersion compensation. Journal of Optics A: Pure and Applied Optics. 2006;8(9):788.

14. Akulin V. Coherent dynamics of complex quantum systems. Springer Science & Business Media;2005: 472.

15. Carmel L., Mann A. Geometrical approach to two-level hamiltonians. Physical Review A. 2000;61(5):052113.

16. Hasegawa A., Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Applied Physics Letters. 1973; 23(3):142–144.

17. Hasegawa A., Matsumoto M. Optical solitons in fibers. Springer; 2003: 41–59.

18. Mollenauer L.F., Gordon J.P. Solitons in optical fibers: fundamentals and applications. Elsevier;2006: 296.

19. Turitsyn S.K., Shapiro E.G., Medvedev S.B., Fedoruk M.P., Mezentsev V.K. Physics and mathematics of dispersion-managed optical solitons. Comptes Rendus Physique. 2003; 4(1):145–161.

20. Hasegawa A., Nyu T. Eigenvalue communication. Journal of Lightwave Technology. 1993;11(3):395–399.

21. Hari S., Yousefi M.I., Kschischang F.R. Multieigenvalue communication. Journal of Lightwave Technology. 2016; 34(13):3110–3117.

22. Medvedev S., Vaseva I., Chekhovskoy I., Fedoruk M. Exponential fourth order schemes for direct Zakharov – Shabat problem. Optics Express. 2020; 28(1):20.

23. Boffetta G., Richard A. Osborne computation of the direct scattering transform for the nonlinear Schr¨odinger equation. Journal of Computational Physics. 1992; 102(2):252–264.

24. Vasylchenkova A., Prilepsky J.E., Shepelsky D., Chattopadhyay A. Direct nonlinear Fourier transform algorithms for the computation of solitonic spectra in focusing nonlinear Schr¨odinger equation. Communications in Nonlinear Science and Numerical Simulation. 2019; (68):347–371.

25. Medvedev S., Vaseva I., Chekhovskoy I., Fedoruk M. Numerical algorithm with fourth-order accuracy for the direct Zakharov – Shabat problem. Optics Letters. 2019; 44(9):2264.

26. Medvedev S., Chekhovskoy I., Vaseva I., Fedoruk M. Fast sixth-order algorithm based on the generalized Cayley transform for the Zakharov – Shabat system associated with nonlinear Schr¨odinger equation. Journal of Computational Physics. 2022; (448):110764.

27. Blanes S., Casas F., Thalhammer M. High-order commutatorfree quasi-Magnus exponential integrators for non-autonomous linear evolution equations. Computer Physics Communications. 2017;(220):243–262.

28. Chimmalgi S., Prins P.J., Wahls S. Fast nonlinear Fourier transform algorithms using higher order exponential integrators. IEEE Access. 2019; (7):145161–145176.

29. Chimmalgi S., Prins P.J., Wahls S. Fast nonlinear Fourier transform algorithms using higher order exponential integrators. arXiv Preprint. 2018; arXiv:1812.00703.

30. Wahls S., Vincent Poor H. Fast numerical nonlinear Fourier transforms. IEEE Transactions on Information Theory. 2015; 61(12):6957–6974.

31. Vaibhav V. Fast inverse nonlinear Fourier transformation using exponential one-step methods:Darboux transformation. Physical Review E. 2017; 96(6):063302.

32. Delitsyn A.L. Fast algorithms for solving the inverse scattering problem for the Zakharov – Shabat system of equations and their applications. Mathematical Notes. 2022; 112(2):199–214.DOI:10.1134/S0001434622070240.

33. Medvedev S., Chekhovskoy I., Vaseva I., Fedoruk M. Conservative multiexponential scheme for solving the direct Zakharov – Shabat scattering problem. Optics Letters. 2020; 45(7):2082–2085.

34. Suzuki M. General nonsymmetric higher-order decomposition of exponential operators and symplectic integrators. Journal of the Physical Society of Japan. 1992; 61(9):3015–3019.

35. Delves L.M., Lyness J.N. A numerical method for locating the zeros of an analytic function. Mathematics of Computation. 1967; 21(100):543–543.

36. Vasylchenkova A., Prilepsky Ja.E., Turitsyn S.K. Contour integrals for numerical computation of discrete eigenvalues in the Zakharov – Shabat problem. Optics Letters. 2018; 43(15):3690.

37. Chekhovskoy I.S., Medvedev S.B., Vaseva I.A., Sedov E.V., Fedoruk M.P. Introducing phase jump tracking — a fast method for eigenvalue evaluation of the direct Zakharov – Shabat problem. Communications in Nonlinear Science and Numerical Simulation. 2021; (96):105718.

38. He J., Jianping L., Qin Y., Lin N., Yu X., He Y., Xu O., Peng D., Xiang M., Zhou G.,Fu S. Adaptive trust-region-based algorithm for the discrete eigenvalue evaluation of the direct nonlinear Fourier transform. Optics Letters. 2022; 47(16):4195–4198.

39. Yousefi M.I., Kschischang F.R. Information transmission using the nonlinear Fourier transform.Part II: numerical methods. IEEE Transactions on Information Theory. 2014; 60(7):4329–4345.

40. Vaibhav V. Efficient nonlinear Fourier transform algorithms of order four on equispaced grid. IEEE Photonics Technology Letters. 2019; 31(15):1269–1272.

41. Prins P.J., Wahls S. Higher order exponential splittings for the fast nonLinear Fourier transform of the Korteweg – De Vries equation. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing — Proceedings. 2018; (4):4524–4528.

42. Wahls S., Vaibhav V. Fast inverse nonlinear Fourier transforms for continuous spectra of Zakharov –Shabat type. arXiv Preprint. 2016; arXiv:1607.01305.

43. Kamalian-Kopae M., Vasylchenkova A., Shepelsky D., Prilepsky Ja.E., Turitsyn S.K. Fullspectrum periodic nonlinear Fourier transform optical communication through solving the Riemann –Hilbert problem. Journal of Lightwave Technology. 2020; 38(14):3602–3615.

44. Xiao G., Yashiro K. An efficient algorithm for solving Zakharov – Shabat inverse scattering problem.IEEE Transactions on Antennas and Propagation. 2002; 50(6):807–811.

45. Belai O.V., Podivilov E.V., Schwarz O.Ya., Shapiro D.A., Frumin L.L. Finite bragg grating synthesis by numerical solution of hermitian Gel’fand – Levitan – Marchenko equations. JOSA B. 2006;23(10):2040–2045.

46. Belai O.V., Frumin L.L., Podivilov E.V., Shapiro D.A. Efficient numerical method of the fiber bragg grating synthesis. JOSA B. 2007; 24(7):1451–1457.

47. Frumin L.L., Belai O.V., Podivilov E.V., Shapiro D.A. Efficient numerical method for solving the direct Zakharov – Shabat scattering problem. JOSA B. 2015; 32(2):290–296.

48. Medvedev S., Vaseva I., Fedoruk M. Block Toeplitz inner-bordering method for the Gelfand –Levitan – Marchenko equations associated with the Zakharov – Shabat system. Journal of Inverse and Ill-posed Problems. 2023; 31(2):191–202.

49. Feced R., Zervas M.N., Muriel M.A. An efficient inverse scattering algorithm for the design of nonuniform fiber bragg gratings. IEEE Journal of Quantum Electronics. 1999; 35(8):1105–1115.

50. Rosenthal A., Horowitz M. Inverse scattering algorithm for reconstructing strongly reflecting fiber bragg gratings. IEEE Journal of Quantum Electronics. 2003; (39):1018–1026.

51. Ahmad F., Razzaghi M. A numerical solution to the Gel’fand – Levitan – Marchenko equation.Applied Mathematics and Computation. 1998; 89(1–3):31–39.

52. Yousefi M., Yangzhang X. Linear and nonlinear frequency-division multiplexing. IEEE Transaction on Information Theory. 2020; 66(1):478–495.

53. Aref V. Control and detection of discrete spectral amplitudes in nonlinear Fourier spectrum. arXiv Preprint. 2016; arXiv:1605.06328.

54. Aref V., Le S.T., Buelow H. Modulation over nonlinear Fourier spectrum: continuous and discrete spectrum. Journal of Lightwave Technology. 2018; 36(6):1289–1295.

55. Turitsyn S.K., Prilepsky Ja.E., Le S.T., Wahls S., Frumin L.L., Kamalian M., Derevyanko S.A. Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives. Optica. 2017; 4(3):307–322.

Bibliography link:
Medvedev S.B., Vaseva I.A., Chekhovskoy I.S., Fedoruk M.P. On numerical algorithms for solving the direct and inverse scattering problems of the Zakharov -Shabat system // Computational technologies. 2023. V. 28. ¹ 3. P. 60-83
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT