Article information

2023 , Volume 28, ¹ 1, p.23-32

Dobrilovic D., Mazalica M., Popov S.

UAV 3D path planning methodology for building health monitoring

Nowadays the unmanned aerial vehicles (UAVs) become popular and are increasingly used in a wide range of applications. The UAVs are used as flying-based station to enable communication services to a ground station and are referred to as UAVs-assisted communication. Also, UAVs are used for a multitude of applications from cargo delivery to surveillance referred to as cellularconnected UAVs. This paper presents the methodology for 3D path planning for building health monitoring. The result of this study gives an optimal path for UAV which should be taken during the supervision of the building to detect the cracks on the surface of the building. The methodology combines the application of Dijkstra’s, Floyd – Warshall’s algorithms, travelling salesman problem (TSP), and hybrid particle swarm optimization algorithm (HPSO) for finding an optimized path in UAV moving around building for surveillance in the structural health monitoring

[link to elibrary.ru]

Keywords: UAV path planning, structural health monitoring (SHM), critical infrastructure monitoring, photogrammetry

doi: 10.25743/ICT.2023.28.1.003

Author(s):
Dobrilovic Dalibor
PhD. , Associate Professor
Position: Associate Professor
Office: University of Novi Sad
Address: 23000, Serbia, Zrenjanin, Djure Djakovica bb
Phone Office: (381) 628019760
E-mail: dalibor.dobrilovic@tfzr.rs

Mazalica Milica
Position: Assistent
Office: University of Novi Sad
Address: 23000, Serbia, Zrenjanin, Djure Djakovica, bb
Phone Office: (381) 64232756
E-mail: milica.mazalica@tfzr.rs

Popov Srdjan
PhD. , Associate Professor
Position: Associate Professor
Office: University of Novi Sad
Address: 21000, Serbia, Novi Sad, Dositeja Obradovica 6, str.
Phone Office: (381) 638494319
E-mail: srdjanpopov@uns.ac.rs

References:

1. Aggarwal S., Kumar N. Path planning techniques for unmanned aerial vehicles: a review, solutions, and challenges. Computer Communications. 2019; (149):270-299. 10.1016/j.comcom.2019.10.014. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0140366419308539?via%3Dihub. DOI: 10.1016/j.comcom.2019.10.014

2. Qadir Z., Ullah F., Munawar H.S., Al-Turjman F. Addressing disasters in smart cities through UAVs path planning and 5G communications: a systematic review. Computer Communications. 2021; (168):114-135. 10.1016/j.comcom.2021.01.003. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0140366421000116?via%3Dihub. DOI: 10.1016/j.comcom.2021.01.003.

3. Nesmachnow S., Paz C., Toutouh Ja., Tchernykh A. Multiobjective evolutionary flight planning of autonomous unmanned aerial vehicles for exploration and surveillance. 1st International Workshop on Advanced Information and Computation Technologies and Systems 2020. 2021; (2858):114-119. 10.47350/AICTS.2020.13. Available at: https://www.researchgate.net/publication/351750678_Multiobjective_evolutionary_flight_planning_of_autonomous_unmanned_aerial_vehicles_for_exploration_and_surveillance. DOI: 10.47350/AICTS.2020.13.

4. Tan Y., Li S., Liu H., Chen P., Zhou Zh. Automatic inspection data collection of building surface based on BIM and UAV. Automation in Construction. 2021; (131):103881. 10.1016/j.autcon.2021.103881. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0926580521003320?via%3Dihub. DOI: 10.1016/j.autcon.2021.103881.

5. Outay F., Mengash H.A., Adnan M. Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: recent advances and challenges. Transportation Research Part A: Policy and Practice. 2020; (141):116-129. 10.1016/j.tra.2020.09.018. Available at: https://www.sciencedirect.com/science/article/pii/S096585642030728X?via%3Dihub. DOI: 10.1016/j.tra.2020.09.018.

6. Zulkipli M.A., Tahar K.N. Multirotor UAV-based photogrammetric mapping for road design. International Journal of Optics. 2018; (2018):1871058. 10.1155/2018/1871058. Available at: https://www.hindawi.com/journals/ijo/2018/1871058. DOI: 10.1155/2018/1871058.

7. Visockiene J.S., Puziene R., Stanionis A., Tumeliene E. Unmanned aerial vehicles for photogrammetry: analysis of orthophoto images over the territory of Lithuania. International Journal of Aerospace Engineering. 2016; (2016):4141037. DOI: 10.1155/2016/4141037

8. Dobrilovic D., Jotanovic G., Stjepanovic A., Jausevac G., Perakovic D. A model of UAV based waste monitoring system for urban areas. International Conference on Cyber Security, Privacy and Networking (ICSPN 2021, September 17-19, India). 2021. (In press).
1
9. Jing W., Shimada K. Model-based view planning for building inspection and surveillance using voxel dilation, medial objects, and random-key genetic algorithm. Journal of Computational Design and Engineering. 2018; 5(3):337-347. 10.1016/j.jcde.2017.11.013. Available at: https://academic.oup.com/jcde/article/5/3/337/5728967. DOI: 10.1016/j.jcde.2017.11.013.

10. Singh N., Singh S.B., Shahzad N. Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance. Journal of Aplaied Mathematics. 2017; (2017):2030489. 10.1155/2017/2030489. Available at: https://www.hindawi.com/journals/jam/2017/2030489. DOI: 10.1155/2017/2030489.

11. Arif S.M., Hussain A., Lie T.T., Ahsan S.M., Khan H.A. Analytical hybrid particle swarm optimization algorithm for optimal siting and sizing of distributed generation in smart grid. Journal of Modern Power Systems and Clean Energy. 2020; 8(6):1221-1230. DOI: 10.35833/MPCE.2019.000237

12. Wan Zh., Wang G., Sun B. A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving nonlinear bilevel programming problems. Swarm and Evolutionary Computation. 2013; (8):26-32. 10.1016/j.swevo.2012.08.001. Availalle at: https://www.sciencedirect.com/science/article/abs/pii/S2210650212000594?via%3Dihub. DOI: 10.1016/j.swevo.2012.08.001.

13. Phung M.D., Quach C.H., Dinh T.H., Ha Q. Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection. Automation in Construction. 2017;(81):25-33. 10.1016/j.autcon.2017.04.013. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0926580517303825?via%3Dihub. DOI: 10.1016/j.autcon.2017.04.013.

14. Dhulkefl E.J., Durdu A. Path planning algorithms for unmanned aerial vehicles. International Journal of Trend in Scientific Research and Development. 2019; 3(4):359-362.


Bibliography link:
Dobrilovic D., Mazalica M., Popov S. UAV 3D path planning methodology for building health monitoring // Computational technologies. 2023. V. 28. ¹ 1. P. 23-32
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT