Article information

2022 , Volume 27, ¹ 6, p.4-18

Virts R.A., Papin A.A.

Modelling the storage of carbon dioxide in viscoelastic porous medium

Purpose. This paper presents a model that describes gas filtration in a poroelastic medium. The initial-boundary problem describing carbon dioxide injection into a geological environment is formulated. The purpose of the research is numerical solution of the initial-boundary value problem and the analysis of results of the presented numerical simulation.

Methodology. The assumption that the solid phase velocity is small allows reducing the original system of constitutive two-dimensional equations to two equations for the effective pressure and porosity. For numerical implementation, the scheme of alternating directions and the Runge – Kutta method of the fourth order of accuracy are used. A parabolic equation for the effective pressure was solved using the stabilizing correction scheme and the explicit scheme for the heat equation. Grid convergence is tested by a series of computational experiments on sequences of refined grids.

Findings. Several options for gas injection are considered. Optimal parameters for storing carbon dioxide in geological formations in the long term have been found.

Originality/value. Taking into account the poroelastic properties and the assumption of the deformability of the solid phase of the medium allows making new predictions of the distribution of carbon dioxide in geological media. The research results can be useful for improving existing carbon dioxide storage models and for developing new ones.

[full text]
Keywords: porosity, filtration, poroelasticity, carbon dioxide, injection, numerical solution

doi: 10.25743/ICT.2022.27.6.002

Author(s):
Virts Rudolf Aleksandrovich
Position: Student
Office: Altai State University
Address: 656049, Russia, Barnaul, Lenina avenue, 61
Phone Office: (3852) 298156
E-mail: virtsrudolf@gmail.com
SPIN-code: 9089-2912

Papin Aleksander Alekseevich
Dr. , Professor
Position: Head of Chair
Office: Altai State University
Address: 656049, Russia, Barnaul, Lenina avenue, 61
Phone Office: (3852) 298156
E-mail: papin@math.asu.ru
SPIN-code: 9089-2912

References:

1. Wen B., Shi Z., Jessen K., Hesse M.A., Tsotsis T.T. Convective carbon dioxide dissolution in a closed porous medium at high-pressure real-gas conditions. Advances in Water Resources. 2021; 2021(154):103950. DOI:10.1016/j.advwatres.2021.103950. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0309170821001056.

2. Singh R.P., Shekhawat K.S., Das M.K., Muralidhar K. Geological sequestration of CO2 in a water-bearing reservoir in hydrate-forming conditions. Oil & Gas Science and Technology — Revue d’IFP Energies Nouvelles. 2020; 75(5):51. DOI:10.2516/ogst/2020038. Available at: https://www.researchgate.net/publication/343233780_Geological_sequestration_of_CO_2_in_a_water-bearing_reservoir_in_hydrate-forming_conditions.

3. Wen B., Akhbari D., Zhang L., Hesse M.A. Convective carbon dioxide dissolution in a closed porous medium at low pressure. Journal of Fluid Mechanics. 2018; (854):56–87. DOI:10.1017/jfm.2018.622. Available at: https://www.researchgate.net/publication/327352691_Convective_carbon_dioxide_dissolution_in_a_closed_porous_medium_at_low_pressure.

4. Kim K., Vilarrasa V., Makhnenko R.Y. CO2 injection effect on geomechanical and flow properties of calcite-rich reservoirs. Fluids. 2018; 3(3):66. DOI:10.3390/fluids3030066. Available at: https://www.mdpi.com/2311-5521/3/3/66.

5. Musakaev N.G., Khasanov M.K. The mathematical model of the carbon dioxide burial in the reservoir saturated with hydrate. Proceedings of the Mavlyutov Institute of Mechanics. 2016; 11(2):181–187. DOI:10.21662/uim2016.2.026. Available at: http://proc.uimech.org/uim2016.2.026#gsc.tab=0. (In Russ.)

6. El-Amin M.F., Sun Sh., Salama A. Modeling and simulation of nanoparticle transport in multiphase flows in porous media: CO2 sequestration. Mathematical Methods in Fluid Dynamics and Simulation of Giant Oil and Gas Reservoirs. Istanbul, Turkey. September 3–5, 2012. Paper Number: SPE-
163089-MS. DOI:10.2118/163089-MS. Available at: https://onepetro.org/spelsrs/proceedings-abstract/12LSRS/All-12LSRS/SPE-163089-MS/159340.

7. Afanasyev A.A., Melnik O.E., Tsvetkova Yu.D. Modeling of flows in porous media related to underground carbon dioxide storage using high performance computing systems. Computational Continuum Mechanics. 2013; 6(4):420–429. Available at: http://journal.permsc.ru/index.php/ccm/article/view/CCMv6n4a4. (In Russ.)

8. Virts R.A., Papin A.A. Problemy matematicheskogo modelirovaniya khraneniya uglekislogo gaza v geologicheskikh formatsiyakh: uchebnoe posobie [Problems of mathematical modelling of carbon dioxide storage in geological formations]. Barnaul: Altayskiy Gosudarstvennyy Universitet; 2021: 70.
(In Russ.)

9. Connoly J.A.D., Podladchikov Y.Y. Compaction-driven fluid flow in viscoelastic rock. Geodinamica Acta. 1998; 11(2–3):55–84. DOI:10.1016/S0985-3111(98)80006-5. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0985311198800065.

10. Fowler A. Mathematical geoscience. London: Springer-Verlag; 2011: 883.

11. Bear J. Dynamics of fluids in porous media. N.Y.: American Elsevier Publishing Company; 1972: 764.

12. Morency S., Huismans R.S., Beaumont C., Fullsack P. A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability. Journal of Geophysical Research. 2007; 112(B10). DOI:10.1029/2006JB004701. Available at: https://agupubs.
onlinelibrary.wiley.com/doi/full/10.1029/2006JB004701.

13. Nigmatulin R.I. Dynamics of multiphase media. CRC Press; 1987; (1):532.

14. Khasanov M.K., Rafikova G.R., Musakaev N.G. Mathematical model of carbon dioxide injection into a porous reservoir saturated with methane and its gas hydrate. Energies. 2020; 13(2):440. DOI:10.3390/en13020440. Available at: https://www.mdpi.com/1996-1073/13/2/440.

15. Virts R.A., Papin A.A., Tokareva M.A. Non-isothermal filtration of a viscous compressible fluid in a viscoelastic porous medium. Journal of Physics: Conference Series. 2020; 1666(1). DOI:10.1088/1742-6596/1666/1/012041. Available at: https://iopscience.iop.org/article/10.1088/1742-6596/1666/1/012041.

16. Papin A.A., Tokareva M.A., Virts R.A. Filtration of liquid in a non-isothermal viscous porous medium. Journal of Siberian Federal University. Mathematics & Physics. 2020; 13(6):763–773. DOI:10.17516/1997-1397-2020-13-6-763-773. Available at: http://journal.sfu-kras.ru/en/article/137564.

17. Virts R.A., Papin A.A., Weigant V.A. Numerical solution of the one-dimensional problem of filtration of an incompressible fluid in a viscous porous medium. Izvestiya of Altai State University. 2018; 4(102):62–67. DOI:10.14258/izvasu(2018)4-11. Available at: http://izvestiya.asu.ru/article/view/%282018%294-11. (In Russ.)

18. Sibin A.N., Sibin N.N. Numerical solution of one-dimensional problem of filtration with suffosion processes. Izvestiya of Altai State University. 2017; 1(93):123–126. DOI:10.14258/izvasu(2017)1-24. Available at: http://izvestiya.asu.ru/index.php/iz/article/view/2249. (In Russ.)

19. Tokareva M.A. Solvability of initial boundary value problen for the equations of filtration poroelastic media. Journal of Physics: Conference Series. 2016; 722(1):012037. DOI:10.1088/1742-6596/722/1/012037. Available at: https://iopscience.iop.org/article/10.1088/1742-6596/722/1/012037.

20. Tokareva M.A., Papin A.A. Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium. Journal of Applied and Industrial Mathematics. 2019; 13(2):350–362. DOI:10.1134/S1990478919020169. Available at: https://www.researchgate.
net/publication/358226792_Global_Solvability_of_a_System_of_Equations_of_One-
Dimensional_Motion_of_a_Viscous_Fluid_in_a_Deformable_Viscous_Porous_Medium.

21. Papin A.A., Tokareva M.A. On local solvability of the system of the equations of one dimensional motion of magma. Journal of Siberian Federal University. Mathematics & Physics. 2017; 10(3):385–395. DOI:10.17516/1997-1397-2017-10-3-385-395. Available at: https://elib.sfu-kras.ru/handle/2311/33623.

22. Samarskii A.A. The theory of difference schemes. Marcel Dekker Inc; 2001: 786.

23. Kalitkin N.N. Chislennye metody [Numerical methods]. Moscow: Nauka; 1986: 512. (In Russ.)

24. Pershin I.V., Titov V.A., Shishkin G.I. Experimental evaluation of the order of uniform convergence for special difference schemes. Mathematical Models and Computer Simulations. 1995; 7(6):85–94. (In Russ.)

25. Khakimzyanov G.S., Cherny S.G. Numerical methods for solving problems for equations of parabolic and elliptic types. Novosibirsk: Novosibirskiy Gosudarstvennyy Universitet; 2007: 160. (In Russ.)

26. Polubarinova-Kochina P.Ya. Theory of ground water movement. Princeton University Press; 1962: 613.

27. Petrushin E.O., Arutyunyan A.S. Technical characteristics of wells and equipment for hydrodynamic studies. The Science. Technics. Technologies (Polytechnic Bulletin). 2015; (2):73–83. (In Russ.)

Bibliography link:
Virts R.A., Papin A.A. Modelling the storage of carbon dioxide in viscoelastic porous medium // Computational technologies. 2022. V. 27. ¹ 6. P. 4-18
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT