Article information
2022 , Volume 27, ¹ 5, p.89-100
Davydov A.V., Nagul N.V., Larionov A.A.
On events processing in a formal logical approach to control of discrete event systems
The paper provides an insight into the control of automata-based discrete event systems with the help of the calculus of positively constructed formulas. It is shown how the knowledge available in the system may be exploited during the inference of such formulas for events processing and supervisor implementation. The approach described may be applied at different levels of a robot or a robot group control system. As an illustration, the problem of mobile robots pushing a block to a target area is considered
[full text] [link to elibrary.ru]
Keywords: discrete event systems, positively constructed formulas, automated theorem proving, supervisory control
doi: 10.25743/ICT.2022.27.5.009
Author(s): Davydov Artem Vasilyevich Position: Research Scientist Office: Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences Address: 664033, Russia, Irkutsk, Lermontova st., 134
Phone Office: (3952)453085 E-mail: artem@icc.ru SPIN-code: 9827-5805Nagul Nadezhda Vladimirovna PhD. , Senior Scientist Position: Senior Research Scientist Office: Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences Address: 664033, Russia, Irkutsk, Lermontova st., 134
Phone Office: (3952)453085 E-mail: sapling@icc.ru SPIN-code: 9851-3181Larionov Aleksandr Aleksandrovich Position: Programmer Office: Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences Address: 664033, Russia, Irkutsk, Lermontova st., 134
Phone Office: (3952)453085 E-mail: bootfrost@zoho.com SPIN-code: 9851-3181 References: [1] Cassandras C.G., Lafortune S. Introduction to discrete event systems. Boston: Springer; 2008: 772.
[2] Seatzu C., Silva M., van Schuppen J.H. (Eds) Control of discrete-event systems. London: Springer; 2013: 480. DOI:10.1007/978-1-4471-4276-8.
[3] Wonham W.M., Cai K. Supervisory control of discrete-event systems. Cham: Springer; 2019: 487.
[4] Vassilyev S.N. Machine synthesis of mathematical theorems. The Journal of Logic Programming. 1990; (9):235266. DOI:10.1016/0743-1066(90)90042-4.
[5] Zherlov A.K., Vassilyev S.N., Fedosov E.A., Fedunov B.E. Intellektnoe upravlenie dinamicheskimi sistemami [Intelligent control of dynamic systems]. Moscow: Fizmatlit; 2000: 352. (In Russ.)
[6] Davydov A., Larionov A., Cherkashin E. On the calculus of positively constructed formulas for automated theorem proving. Automatic Control and Computer Sciences. 2011; (45):402407. DOI:10.3103/s0146411611070054.
[7] Davydov A., Larionov A., Cherkashin E. The calculus of positively constructed formulas, its features, strategies and implementation. International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Opatija; 2013: 10231028.
[8] Kov ́acs L., Voronkov A. First-order theorem proving and vampire. Computer Aided Verification. Berlin, Heidelberg: Springer; 2013: 135
9] Otten J. Nanocop: a non-clausal connection prover. Proceedings of the 8th International Joint Conference on Automated Reasoning. Berlin, Heidelberg: Springer-Verlag; 2016: 302312. DOI:10.1007/978-3-319-40229-1 21.
[10] Schulz S., Cruanes S., Vukmirovi ́c P. Faster, higher, stronger: E 2.3. Proc. of the 27th CADE. Natal, Brasil: Springer; 2019: 495507.
[11] Davydov A., Larionov A. Action planning for robots using the first order logic calculus of positively constructed formulas. 2020 7th International Confer- ence on Control, Decision and Information Technologies (CoDIT). 2020; (1):727732. DOI:10.1109/CoDIT49905.2020.9263814.
[12] Karpas E., Magazzeni D. Automated planning for robotics. Annual Review of Control, Robotics, and Autonomous Systems. 2020; (3):417439.
[13] Zombori Z., Urban J., Brown C.E. Prolog technology reinforcement learning prover. International Joint Conference on Automated Reasoning. Springer; 2020: 489507.
[14] Schader M., Luke S. Planner-guided robot swarms. International Conference on Practical Applications of Agents and Multi-Agent Systems. Springer; 2020: 224237.
[15] Geng X., Ouyang D., Han C. Verifying diagnosability of discrete event system with logical formula. Chinese Journal of Electronics. 2020; (29):304311. DOI:10.1049/cje.2020.01.008.
[16] Davydov A., Larionov A., Nagul N. On checking controllability of specification languages for des. 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). 2020: 11511156. DOI:10.23919/MIPRO48935.2020.9245154.
[17] Davydov A., Larionov A., Nagul N. The construction of controllable sublanguage of specification for DES via PCFs based inference. CEUR Workshop Proceedings. 2020; (2638):6878.
[18] Davydov A., Larionov A., Nagul N. Application of the PCF calculus for solving the problem of nonblocking supervisory control of discrete event systems. Journal of Physics: Conference Series. 2021; (1864):012048. DOI:10.1088/1742-6596/1864/1/012048.
[19] Davydov A., Larionov A., Nagul N. Positively constructed formulas-based approach to mobile robot control using DES. 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO). 2021: 10641069. DOI:10.23919/MIPRO52101.2021.9597024.
[20] de Queiroz M.H., Cury J.E.R. Modular supervisory control of large scale discrete event systems. The Springer International Series in Engineering and Computer Science. 2000; (569):103110. DOI:10.1007/978-1-4615-4493-7 10. Bibliography link: Davydov A.V., Nagul N.V., Larionov A.A. On events processing in a formal logical approach to control of discrete event systems // Computational technologies. 2022. V. 27. ¹ 5. P. 89-100
|