Article information

2022 , Volume 27, ¹ 3, p.16-35

Ponomareva T.V., Ponomarev E.I., Litvintsev K.Y., Finnikov K.A., Yakimov N.D.

Thermal state of disturbed soils in the permafrost zone of Siberia according the remote data and numerical simulation

The article discusses the results of monitoring and modelling the thermal state of soils in Siberian permafrost ecosystems disturbed by natural or technogenic factors. In the study, we used long-term satellite data and numerical simulation techniques for evaluating heat transfer and a variety of water/ice phase boundaries in the soil profile with reference to ground-based measurements. We simulated the state of the seasonally thawed layer of disturbed soils when thermal insulation properties of the surface decreases. Also, we estimated the limits of variation and the trends in the dynamics of surface thermal anomalies in disturbed plots depending on impact factors. According to remote sensing, the thermal insulation properties of the vegetation cover restore within 20 years after fire impact. During that time, the relative temperature anomaly reaches the level of background values. In post-technogenic plots, conditions are more “contrast” compared to the background which lead to significantly longer period to restoration of the thermal regime (up to 60–80 years).

The data from field observations and numerical simulation revealed positive temperature anomaly within soil profile in the disturbed areas that lasts for the whole year. Its presence in winter is caused by the decrease of thermal insulation properties of the organogenic soil layers. The presence of transition regions due to horizontal heat transfer in soils (with a characteristic size of ∼5.5 m) was observed. In our opinion, areas of rapid recovery successions can form along the boundaries of disturbed areas. This actualizes further study of their properties.

[full text] [link to elibrary.ru]

Keywords: disturbed soils, heat transfer, numerical simulation, thermal imaging, remote sensing data, seasonally thawed layer

doi: 10.25743/ICT.2022.27.3.003

Author(s):
Ponomareva Tatiana Valerievna
PhD. , Associate Professor
Position: Senior Research Scientist
Office: V.N. Sukachev Institute of Forests, Federal Research Center, Krasnoyarsk Science Center Siberian Branch Russian Academy of Sciences
Address: 660036, Russia, Krasnoyarsk
SPIN-code: 5910-2937

Ponomarev Evgenii Ivanovich
PhD. , Associate Professor
Position: Senior Research Scientist
Office: V.N. Sukachev Institute of Forests, Federal Research Center, Krasnoyarsk Science Center Siberian Branch Russian Academy of Sciences
Address: 660036, Russia, Krasnoyarsk
SPIN-code: 8041-2037

Litvintsev Kirill Yurievich
PhD.
Position: Research Scientist
Office: Researcher of the Institute of Thermophysics of SB RAS
Address: 660036, Russia, Krasnoyarsk, Krasnoyarsk, Akademgorodok 50/44
Phone Office: (391) 2494726
E-mail: sttupick@yandex.ru
SPIN-code: 4034-9004

Finnikov Konstantin Andreevich
PhD. , Associate Professor
Office: Siberian Federal University
Address: 660041, Russia, Krasnoyarsk, Svobodny Ave., 79
E-mail: f_const@mail.ru
SPIN-code: 4079-4365

Yakimov Nikita Dmitrievich
Position: Junior Research Scientist
Office: Federal Research Center, Krasnoyarsk Science Center SB RAS
Address: 660041, Russia, Krasnoyarsk, Svobodny Ave., 79
SPIN-code: 9212-8622

References:
1. Dror I., Yaron B. The human impact on all soil-forming factors during the anthropocene. ACS Environmental Science & Technology. 2022; (2):11–19. DOI:10.1021/acsenvironau.1c00010. Available at: https://pubs.acs.org/doi/pdf/10.1021/acsenvironau.1c00010.

2. Ponomarev E.I., Ponomareva T.V. The effect of postfire temperature anomalies on seasonal soil thawing in the permafrost zone of central Siberia evaluated using remote data. Ñontemporary Problems of Ecology. 2018; (4):477–486. DOI:10.1134/S1995425518040066. Available at: https:// link.springer.com/content/pdf/10.1134/S1995425518040066.pdf. (In Russ.)

3. Gosudarstvennyy doklad “O sostoyanii i okhrane okruzhayushchey sredy v Krasnoyarskom krae v 2020 godu”. Ministerstvo Ekologii i Ratsional’nogo Prirodopol’zovaniya Krasnoyarskogo Kraya; 2021 [State report “On the state and protection of the environment in the Krasnoyarsk Territory in 2020“’. Ministry of Ecology and Rational Nature Management of the Krasnoyarsk Territory; 2021]. Available at: http: //www.mpr.krskstate.ru/dat/bin/art_attach/17690_gosdoklad_2020.pdf (accessed 01.02.2022).

4. Herrick J.E., Brown J.R., Bestelmeyer B.T., Andrews S.S., Baldi G., Davies J., Duniway M., Havstad K.M., Karl J.W., Karlen D.L., Peters D.P.C., Quinton J.N., Riginos C., Shaver P.L., Steinaker D., Twomlow S. Revolutionary land use change in the 21st Century: is (Rangeland) science relevant. Rangeland Ecology and Management. 2012; 65(6):590–598. DOI:10.2111/REM-D-11-00186.1. Available at: https://www.sciencedirect.com/science/article/
pii/S1550742412500977?via%3Dihub.

5. Krasnoshchekov K.V., Dergunov A.V., Ponomarev E.I. Evaluation of underlying surface temperature maps on logging sites using Landsat data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2019; (16):87–97. DOI:10.21046/2070-7401-2019-16-2-87-97. Available
at: http://d33.infospace.ru/d33_conf/sb2019t2/87-97.pdf. (In Russ.)

6. Uzarowicz L., Charzynski P., Greinert A., Hulisz P., Kabala C., Kusza G., Kwasowski W., Pedziwiatr A. Studies of technogenic soils in Poland: past, present, and future perspectives. Soil Science Annual. 2020; 71(4):281–299. DOI:10.37501/soilsa/131615. Available at: http://www.soilsa.
com/pdf-131615-68517?filename=Studies%20of%20technogenic.pdf (accessed 01.02.2022).

7. Bezkorovaynaya I.N., Ivanova G.A., Tarasov P.A., Sorokin N.D., Bogorodskaya A.V., Ivanov V.A., McRae D.J. Pyrogenic transformation of soils in pine forests in the middle taiga of the Krasnoyarsk Territory. Contemporary Problems of Ecology. 2005; (1):143–152. Available at: https://www.sibran.ru/upload/iblock/7c4/7c4281787687934140bca80ff145ece4.pdf (accessed 01.02.2022). (In Russ.)

8. Dymov A.A., Dubrovsky Yu.A., Gabov D.N. Pyrogenic changes in iron-illuvial podzols in the middle taiga of the Komi Republic. Eurasian Soil Science. 2014; (2):144–154. DOI:10.7868/S0032180X14020051. Available at: https://www.elibrary.ru/download/elibrary_21092633_44918343.pdf (accessed 01.02.2022). (In Russ.)

9. Kharuk V.I., Ponomarev E.I. Spatiotemporal characteristics of wildfire frequency and relative area burned in larch-dominated forests of Central Siberia. Russian Journal of Ecology. 2017; (6):413–419. DOI:10.7868/S0367059717060026. (In Russ.)

10. Stavrova N.I., Kalimova I.B., Gorshkov V.V., Drozdova I.V., Alekseeva-Popova N.V., Bakkal I.Yu. Long-term post-fire changes in soil characteristics in dark coniferous forests of the European North. Eurasian Soil Science. 2019; 52(2):218–227. DOI:10.1134/S1064229319020133. Available at: https://sciencejournals.ru/cgi/getPDF.pl?jid=pochved&year=2019&vol=2019&iss=2&file=Pochved1902013Stavrova.pdf. (In Russ.)

11. Bobrik A.A., Goncharova O.Yu., Matyshak G.V., Ryzhova I.M., Moskalenko N.G., Ponomareva O.E., Ogneva O.A. Correlation of active layer thickness and landscape parameters of peatland in Northern West Siberia (Nadym station). Earth’s Cryosphere. 2015; 19(4):31–38. Available at: https://istina.msu.ru/download/73747053/1njdAK:zIlDGpOo8peMas2P43a1HS5XJHE. (In Russ.)

12. Tarnawski V.R., Leong W.H., Bristow K.L. Developing a temperature-dependent Kersten function for soil thermal conductivity. International Journal of Energy Research. 2000; 24(15):1335–1335. DOI:10.1002/1099-114X(200012)24:15<1335::AID-ER652>3.0.CO;2-X.

13. Park H., Launiainen S., Konstantinov P.Y., Iijima Y., Fedorov A.N. Modeling the effect of moss cover on soil temperature and carbon fluxes at a tundra site in northeastern Siberia. Journal of Geophysical Research: Biogeosciences. 2018; (123):3028–3044. DOI:10.1029/2018JG004491. Available at: https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2018JG004491.

14. Desyatkin R.V., Desyatkin A.R., Fedorov P.P. Temperature regime of the forest soils, Central Yakutia. Earth’s Cryosphere. 2012; 16(2):70–78. Available at: http://earthcryosphere.ru/archive/2012_2/10.Desyatkin_2_2012.pdf. (In Russ.)

15. Ekici A., Beer C., Hagemann S., Boike J., Langer M., Hauck C. Simulating highlatitude permafrost regions by the JSBACH terrestrial ecosystem model. Geoscientific Model Development. 2014; 7(2):631–647. DOI:10.5194/gmd-7-631-2014. Available at: https://gmd.copernicus.org /articles/7/631/2014/gmd-7-631-2014.pdf.

16. Porada P., Ekici A., Beer C. Effects of bryophyte and lichen cover on permafrost soil temperature at large scale. The Cryosphere. 2016; 10(5):2291–2315. DOI:10.5194/tc-10-2291-2016. Available at: https://tc.copernicus.org/articles/10/2291/2016/tc-10-2291-2016.pdf.

17. Pavlov À.V. Monitoring kriolitozony [Cryolithozone monitoring]. Novosibirsk: Geo; 2008: 229. (In Russ.)

18. Orgogozo L., Prokushkin A.S., Pokrovsky O.S., Grenier C., Quintard M., Viers J., Audry S. Water and energy transfer modeling in a permafrost dominated, forested catchment of Central Siberia: the key role of rooting depth. Permafrost and Periglacial Process. 2019; (30):75–89. Available at: https://onlinelibrary.wiley.com/doi/epdf/10.1002/ppp.1995.

19. Perevoznikova V.D., Ivanova G.A., Kovaleva N.M., Ivanov V.A. Transformation of ground vegetation under the effect of fires in pine forests of Middle Siberia. Russian Journal of Ecology. 2007; 38(6):444–448. Available at: https://link.springer.com/content/pdf/10.1134/S1067413607060124.pdf.

20. Sokolov D.A., Androkhanov V.A., Abakumov E.V. Soil formation in technogenic landscapes: trends, results, and representation in the current classifications (review). Vestnik Tomskogo Gosudarstvennogo Universiteta. Biologiya. 2021; (56):6–32. DOI:10.17223/19988591/56/1.

21. Kornienko S.G. Transformation of tundra land cover at the sites of pyrogenic disturbance: studies based on Landsat satellite data. Earth’s Cryosphere. 2017; 21(1):93–104. Available at: http: //earthcryosphere.ru//archive/2017_1/10.%20Kornienko,%20Earth’s%20Cryosphere%201-2017%20pp.93-104_opt.pdf. (In Russ.)

22. Masyagina O.V., Evgrafova S.Y., Titov S.V., Prokushkin A.S. Dynamics of soil respiration at different stages of pyrogenic restoration succession with different-aged burns in Evenkia as an example. Russian Journal of Ecology. 2015; 46(1):25–35. Available at: https://link.springer.com/ content/pdf/10.1134/S1067413615010117.pdf.

23. Ponomareva T.V. Assessment of the structural organization of soils of technogenic landscapes on the basis of radiometric survey in the thermal range. Soils in the Biosphere, Proceedings of the AllRussian Conference. Novosibirsk; 2018: 440–413. Available at: http://vital.lib.tsu.ru/vital/
access/manager/Repository/vtls:000633357. (In Russ.)

24. Masyagina O.V., Evgrafova S.Y., Titov S.V., Prokushkin A.S. A comparative study of soil processes in depletion and accumulation zones of permafrost landslides in Siberia. Landslides. 2020; (17):2577–2587. DOI:10.1007/s10346-020-01550-z. Available at: https://ibook.pub/ql/acomparative-study-of-soil-processes-in-depletion-and-accumulation-zones-ofpermafrost-landslides-in-siberia.

25. Romanov A.N. Influence of water content and temperature on the dielectric and radio emitting properties of the salt crust of puffy solonchak. Eurasian Soil Science. 2019; 52(2):171–179. DOI:10.1134/S1064229319020121. Available at: https://link.springer.com/content/pdf/10. 1134/S1064229319020121.pdf.

26. Mironov V.L., Muzalevskiy K.V., Savin I.V. Retrieving temperature gradient in frozen active layer of Arctic Tundra soils from radiothermal observations in L-band — theoretical modeling. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2013; (6):1781–1785. Available at: http://irbiscorp.spsl.nsc.ru/fulltext/iph/2013/10.1109~JSTARS.2013.2262108.pdf.

27. Im S.T., Kharuk V.I. Dynamics of water mass in the Central Siberia permafrost zone based on gravity survey from the grace satellites. Izvestiya, Atmospheric and Oceanic Physics. 2015; (51):806–818. DOI:10.1134/S0001433815080046. Available at: https://link.springer.com/content/pdf/10.1134/S0001433815080046.pdf.

28. Rodionova N.V. Sentinel 1 radar data correlation with ground measurements of soil moisture and temperature. Issledovanie Zemli iz Kosmosa. 2018; (4):32–42. Available at: http://ras.jes.su/izk/s207987840001552-6-1. (In Russ.)

29. Jin V.L., Haney R.L., Fay P.A., Polley H.W. Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO2-induced changes in litter quality. Soil Biology and Biochemistry. 2013; (58):172–180. DOI:10.1016/j.soilbio.2012.11.024. Available at:
https://www.sciencedirect.com/science/article/abs/pii/S0038071712004683.

30. Vinogradov Yu.B., Semenova O.M., Vinogradova T.A. Hydrological modeling: the approach to simulation of heat dynamics in soil profile (Part 1). Earth’s Cryosphere. 2015; 19(1):11–21. Available at: http://earthcryosphere.ru/archive/2015_1/02.Vinogradov_1_2015.pdf. (In Russ.)

31. Skryabin P.N., Varlamov S.P. Ground thermal regime in disturbed landscapes of Central Yakutia. Earth’s Cryosphere. 2013; 17(3):44–49. Available at: http://earthcryosphere.ru/archive/2013_3/05.Skryabin_3_2013.pdf. (In Russ.)

32. Brown D.R.N., Jorgenson M.T., Kielland K., Verbyla D.L., Prakash A., Koch J.C. Landscape effects of wildfire on permafrost distribution in Interior Alaska derived from remote sensing. Remote Sensing. 2016; 8(8):654. DOI:10.3390/rs8080654. Available at: https://www.mdpi.com/2072-4292/8/8/654/htm.

33. Zwieback S., Westermann S., Langer M., Boike J., Marsh P., Berg A. Improving permafrost modeling by assimilating remotely sensed soil moisture. Water Resources Research. 2019; (55):1814–1832. DOI:10.1029/2018WR02324

34. Ponomarev E., Masyagina O., Litvintsev K., Ponomareva T., Shvetsov E., Finnikov K. The effect of post-fire disturbances on a seasonally thawed layer in the permafrost larch forests of Central Siberia. Forests. 2020; 11(790). DOI:10.3390/f11080790. Available at: https://www.mdpi.
com/1999-4907/11/8/790/htm.

35. Abaimov A.P., Bondarev A.I., Zyraynova O.A., Shitov S.A. Lesa Krasnoyarskogo Zapolyar’ya [Polar forests of Krasnoyarsk Region]. Novosibirsk: Nauka; 1997: 208. (In Russ.)

36. Osawa A., Zyryanova O.A., Matsuura Y., Kajimoto T., Wein R.W. Permafrost ecosystems. Siberian Larch Forests. Springer; 2010: 528. DOI:10.1007/978-1-4020-9693-8.

37. Kawahigashi M., Prokushkin A., Sumida H. Effect of fire on solute release from organic horizons under larch forest in Central Siberian permafrost terrain. Geoderma. 2011; 166(1):171–180. DOI:10.1016/j.geoderma.2011.07.027.

38. Dymov A.A., Abakumov E.V., Bezkorovaynaya I.N., Prokushkin A.S., Kuzyakov Y.V., Milanovsky E.Y. Impact of forest fire on soil properties. Theoretical and Applied Ecology. 2018; (4):13–23. DOI:10.25750/1995-4301-2018-4-013-023. Available at: http://envjournal.ru/ari/v2018/v4/18402.pdf.

39. Mishra N., MdHaque O., Leigh L., Aaron D., Helder D., Markham B. Radiometric cross calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic MapperPlus (ETM+). Remote Sensing. 2014; (6):12619–12638. Available at: https://www.mdpi.com/2072-
4292/6/12/12619/htm.

40. Zanter K. Landsat 8 (L8) data users handbook. U.S. Geological Survey. 2018. Available at: https://prd-wret.s3-us-west 2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1574_L8_Data_Users_Handbook.pdf (accessed 01.02.2022).

41. Van Huissteden J. Thawing permafrost. Permafrost carbon in a warming arctic. Springer Nature Switzerland AG; 2018: 508. DOI:10.1007/978-3-030-31379-1.

42. Zhang Y., Carey S.K., Quinton W.L. Evaluation of the algorithms and parameterizations for ground thawing and freezing simulation in permafrost regions. Journal of Geophysical Research: Space Physics. 2008; (113):D17116. DOI:10.1029/2007JD009343. Available at: https://scholars.wlu.ca/cgi/viewcontent.cgi?article=1021&context=geog_faculty.

43. Patankar S.V. Numerical heat transfer and fluid flow. N.Y.: Hemisphere Publishing Corporation; 1980: 197. DOI:10.1201/9781482234213.

44. Ferziger J.H., Koseff J.R., Monismith S.G. Numerical simulation of geophysical turbulence. Computers and Fluids. 2002; 31(4):557–568. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.486.2251&rep=rep1&type=pdf.

45. Pavlov A.V. Teplofizika landshaftov [Thermal physics of landscapes]. Novosibirsk: Nauka; 1979: 285. (In Russ.)

46. Anisimov O.A., Anokhin Yu.A., Lavrov S.A., Malkova G.V., Myach L.T., Pavlov A.V., Romanovsky V.A., Streletsky D.A., Kholodov A.L., Shiklomanov N.I. Glava 8. Kontinental’naya mnogoletnyaya merzlota. Metody Otsenki Posledstviy Izmeneniya Klimata dlya Fizicheskikh i Biologicheskikh Sistem. Pod red. S.M. Semenova. [Chapter 8. Continental Permafrost. Methods for Assessing the Effects of Climate Change on Physical and Biological Systems]. Moscow: Planeta; 2012: 301–359. Available at: http://downloads.igce.ru/publications/metodi_ocenki/08.pdf (accessed 01.02.2022). (In Russ.)

47. Johansen O. Thermal conductivity of soils. Hanover: CRREL Draft Translation; 1977: 637.

48. Oke T.R. Boundary layer climates. Routledge: Taylor & Francis Group; 1987: 435.

49. Psiloglou B.E., Santamouris M., Asimakopoulos D.N. Atmospheric broadband model for computation of solar radiation at the Earth’s surface. Application to mediterranean climate. Pure and Applied Geophysics. 2000; (157):829–860. Available at: https://link.springer.com/content/pdf/10.1007/PL00001120.pdf.

50. Paltridge G.W., Platt C.M.R. Radiative processes in meteorology and climatology. Amsterdam, N.Y.: Elsevier Scientific Publ. Co.; 1976: 318.

51. Prata A.J. A new long-wave formula for estimating downward clear-sky radiation at the surface. Quarterly Journal of the Royal Meteorological Society. 1996; (122):1127–1151. DOI:10.1002/qj.49712253306.

52. Herrero J., Polo M.J. Parameterization of atmospheric longwave emissivity in a mountainous site for all sky conditions. Hydrology and Earth System Sciences. 2012; (16):3139–3147. DOI:10.5194/hess-16-3139-2012. Available at: https://hess.copernicus.org/articles/16/3139/2012/hess-16-3139-2012.pdf.

53. Yakimov N.D., Ponomarev E.I. Dynamics of post-fire effects in larch forests of Central Siberia based on satellite data. E3S Web of Conferences. Regional Problems of Earth Remote Sensing. 2020; 149(03008):6. DOI:10.1051/e3sconf/202014903008. Available at: https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/09/e3sconf_rpers2020_03008.pdf.

54. Bezkorovaynaya I.N., Borisova I.V., Klimchenko A.V., Shabalina O.M., Zakharchenko L.P., Il’in A.A., Beskrovny A.K. The influence of the pyrogenic factor on biological activity of soils under conditions of permafrost (Central Evenkia). Vestnik KrasGAU. 2017; (9):181–189. Available at: https://www.elibrary.ru/download/elibrary_30103879_90341317.pdf. (In Russ.)

Bibliography link:
Ponomareva T.V., Ponomarev E.I., Litvintsev K.Y., Finnikov K.A., Yakimov N.D. Thermal state of disturbed soils in the permafrost zone of Siberia according the remote data and numerical simulation // Computational technologies. 2022. V. 27. ¹ 3. P. 16-35
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT