Article information
2022 , Volume 27, ¹ 2, p.62-73
Surov V.S.
Calculation of heavy liquid flows by the multidimensional nodal method of characteristics
Gravity forces are included in the hyperbolic generalized-equilibrium model of the medium. This model, which describes the flow of a single-velocity binary mixture of an ideal gas with a second incompressible fraction, is used in multi-fluid hydrodynamics to calculate the combined movement of liquid and gas with automatic localization of contact surfaces. Numerical solution of the model equations adapts a simple but effective multidimensional node method of characteristics. The method was designed to integrate hyperbolic systems and it is based on splitting the original system of equations into a number of one-dimensional subsystems. To do this a one-dimensional node method of characteristics is employed. Using the described method, a number of model problems were solved including the flow of a column of liquid under the influence of gravity, the fall of a water column on a layer of liquid as well as the free oscillation of liquid in the basin.
[full text] [link to elibrary.ru]
Keywords: hyperbolic model of gas-liquid medium, multidimensional nodal method of characteristics
doi: 10.25743/ICT.2022.27.2.006
Author(s): Surov Victor Sergeevich Dr. , Professor Position: Professor Office: South Ural State University Address: 454080, Russia, Chelyabinsk, 76, Lenin prospekt
Phone Office: (951) 778 55 47 E-mail: surovvictor@gmail.com SPIN-code: 9049-3366 References:
1. Parpia I.H., Kentzer C.P., Williams M.H. Multidimensional time dependent method of characteristics. Computers and Fluids. 1988; 16(1):105–117.
2. Surov V.S. Hyperbolic models in the mechanics of heterogeneous media. Computational Mathematics and Mathematical Physics. 2014; 54(1):148–157. DOI:10.1134/S096554251401014X.
3. Sanchez-Alegria A., Moreno P., Loo-Yau J.R., Ortega-Cisneros S. An alternative model for aerial multiconductor transmission lines excited by external electromagnetic fields based on the method of characteristics. Electrical Engineering. 2019; (101):719–731.
4. Pilon L., Viskanta R. Modified method of characteristics for solving population balance equations. International Journal for Numerical Methods in Fluids. 2003; 42(11):1211–1236.
5. Eklund M., Alamaniotis M., Hernandez H., Jevremovic T. Method of characteristics — A review with applications to science and nuclear engineering computation. Progress in Nuclear Energy. 2015; (85):548–567.
6. Surov V.S. Calculation of the elasticplastic deformation of a solid body by multidimensional nodal method of characteristics. Computational Technologies. 2021; 26(4):39–52. DOI:10.25743/ICT.2021.26.4.005. (In Russ.)
7. Martynenko M.D., Bosyakov S.M. Method of characteristics for the dynamic thermoelastic problem of a cubically anisotropic body in stresses. Journal of Engineering Physics and Thermophysics. 2002; 75(3):614–623.
8. Rusanov V.V. Characteristics of the general equations of gas dynamics. Computational Mathematics and Mathematical Physics. 1963; 3(3):674–698.
9. Magomedov K.M., Kholodov A.S. Setochno-kharakteristicheskie chislennye metody [Gridcharacteristic numerical methods]. Moscow: Nauka; 1988: 290. (In Russ.)
10. Surov V.S. Multidimensional nodal method of characteristics for hyperbolic systems. Computer Research and Modeling. 2021; 13(1):19–32. DOI:/10.20537/2076-7633-2021-13-1-19-3. (In Russ.)
11. Surov V.S. Nodal method of characteristics in multifluid hydrodynamics. Journal of Engineering Physics and Thermophysics. 2013; 86(5):1151–1159. DOI:10.1007/s10891-013-0937-5.
12. Surov V.S. On equations of a one-velocity heterogeneous medium. Journal of Engineering Physics and Thermophysics. 2009; 82(1):75–84. DOI:10.1007/s10891-009-0163-3.
13. Surov V.S. On localization of contact surfaces in multifluid hydrodynamics. Journal of Engineering Physics and Thermophysics. 2010; 83(3):549–559. DOI:10.1007/s10891-010-0376-5.
14. Surov V.S. On the problem of boundary conditions in the multidimensional nodal method of characteristics. Journal of Engineering Physics and Thermophysics. 2021; 94(3):695–701. DOI:10.1007/s10891-021-02346-1.
15. Murty T.S. Seismic sea waves. Tsunamis. Ottawa: Department of the Environment. Fisheries and Marine Service; 1977: 337.
16. Pelinovsky E.N. Gidrodinamika voln tsunami [Tsunami wave hydrodynamics]. Nizhny Novgorod: IPF RAN; 1996: 276. (In Russ.)
17. Levin B., Nosov M. Physics of tsunamis. Springer; 2009: 338.
18. Beizel S.A., Shokina N.Yu., Khakimzyanov G.S., Chubarov L.B., Kovyrkina O.A., Ostapenko V.V. On some numerical algorithms for computation of tsunami runup in the framework of shallow water model. Computational Technologies. 2014; 19(1):40–62. (In Russ.)
19. Shokin Yu.I., Rychkov A.D., Khakimzyanov G.S., Chubarov L.B. On numerical methods for solving run-up problems. I. Comparative analysis of numerical algorithms for one-dimensional problems. Computational Technologies. 2015; 20(5):214–232. (In Russ.)
20. Zaytsev A.I., Kurkin A.A., Pelinovsky E.N., Yalciner A. Computational NAMI-DANCE complex in the problem of tsunami waves. Computational Continuum Mechanics. 2019; 12(2):161–174. (In Russ.)
21. Marchuk A.G., Chubarov L.B., Shokin Yu.I. Chislennoe modelirovanie voln tsunami [Numerical modelling of tsunami waves]. Novosibirsk: Nauka; 1983: 175. (In Russ.)
22. Shokin Yu.I., Chubarov L.B., Marchuk A.G., Simonov K.V. Vychislitel’nyy eksperiment v probleme tsunami [Computational experiment in tsunami problem]. Novosibirsk: Nauka; 1989: 168. (In Russ.)
23. Surov V.S. Interaction of shock waves with bubbleliquid drops. Technical Physics. The Russian Journal of Applied Physics. 2001; 46(6):662–667. DOI:10.1134/1.1379630.
24. Cochin N.E., Kibel I.A., Roze N.V. Teoreticheskaya gidromekhanika [Theoretical hydromechanics]. Vol. 1. Moscow: Fizmatgiz; 1963: 584. (In Russ.)
Bibliography link: Surov V.S. Calculation of heavy liquid flows by the multidimensional nodal method of characteristics // Computational technologies. 2022. V. 27. ¹ 2. P. 62-73
|