Article information

2022 , Volume 27, ¹ 2, p.91-104

Brahmi B., Ramdani Z.

A constrained weighted Tchebychev program for multiple objective integer linear programming

In this paper, an algorithm for enumerating all non-dominated vectors of multiple objective integer linear programs is presented. Starting from an initial non-dominated vector, at each iteration, the procedure determines a new solution by solving a constrained weighted Tchebychev program. Progressively more constraints are added to this program in order to reduce the admissible research set.

[full text] [link to elibrary.ru]

Keywords: multiple objective integer programming, Tchebychev norm, branch and bound

doi: 10.25743/ICT.2022.27.2.008

Author(s):
Brahmi Boualem
Office: Department of Operational Research Faculty of Mathematics and Computer Science University of Bordj Bou Arreridj
Address: 34030, Algiers, Bordj Bou Arreridj
Phone Office: (213) 667174884
E-mail: b.brahmi@univ-bba.dz

Ramdani Zoubir
Office: Department of Operational Research Faculty of Exact Sciences University of Bejaia
Address: 06000, Algiers, Bejaia
Phone Office: (213) 554283584
E-mail: z.ramdani@univ-bba.dz

References:

[1] Ramesh R., Karwan M.H., Zionts S. Preference structure representation using convex cones in multicriteria integer programming. Management Science. 1989; (35):1092–1105.

[2] Marcotte O., Soland R.M. An interactive branch-and-bound algorithm for multiple criteria optimization. Management Science. 1986; (32):1231–1240.

[3] Villarreal B., Karwan M.H. Multicriteria integer programming: A (hybrid) dynamic programming recursive approach. Mathematical Programming. 1981; (21):204–223.

[4] Klein D., Hannan E. An algorithm for multiple objective integer linear programming problem. European Journal of Operational Research. 1982; (9):378–385.

[5] Sylva J., Crema A. A method for finding the set of non-dominated vectors for multiple objective integer linear programs. European Journal of Operational Research. 2004; (158):46–55.

[6] Sylva J., Crema A. A method for finding well-dispersed subsets of non-dominated vectors for multiple objective mixed integer linear programs. European Journal of Operational Research. 2007; (180):1011–1027.

[7] Karaivanova J., Korhonen P., Narula S., Wallenius J., Vassilev V. A reference direction approach to multiple objective integer linear programming. European Journal of Operational Research. 1995; (81):176–187.

[8] Eswaran P.K., Ravindran A., Moskowitz H. Algorithms for nonlinear integer bicriterion problems. Journal of Optimization Theory and Applications. 2000; (2):63.

[9] Steuer R.E., Choo E.E. An interactive weighted Tchebychev procedure for multiple objective programming. Mathematical Programming. 1983; (26):326–344.

[10] Ralphs T.K., Saltzman M.J., Wiecek M.M. An improved algorithm for solving biobjective integer programs. Annals of Operations Research. 2007; (157):43–70.

[11] Chalmet L.G., Lemondis L., Elzinga D.J. An algorithm for the bi-criterion integer programming problem. European Journal of Operational Research. 1981; (25):292–300.

[12] Ferreira C., Climaco J., Paix˜ao J. The location-covering problem: A bicriterion interactive approach. Investigacion Operativa. 1994; (4):119–139.

[13] Bitran G.W. Linear multiple objective programs with zero-one variables. Mathematical Programming. 1977; (13):121–139.

[14] Mavrotas G., Florios K. An improved version of the augmented e-constraint method (AUGMECON2) for finnding the exact Pareto set in multi-objective integer programming problems. Applied Mathematics and Computation. 2013; 219(18):9652–9669.

[15] Ehrgott M., Gandibleux X. Multiobjective combinatorial optimization — Theory, methodology and applications. Multiple Criteria Optimization — State of the Art Annotated Bibliographic Surveys. Boston: Kluwer Academic Publishers; 2002: 369–444.

[16] Teghem J., Kunsch P.L. A survey of techniques for finding efficient solutions to multiobjective integer linear programming. Asia-Pacific Journal of Operational Research. 1986; (3):95–108.

[17] Alves M.J., Cl´ımaco J. A review of interactive methods for multiobjective integer and mixed-integer programming. European Journal of Operational Research. 2007; (180):99–115.

[18] Bowman V.J. On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. Multiple Criteria Decision Making. Lecture Notes in Economics and Mathematical Systems. Berlin: Springer-Verlag; 1976: 76–85.

[19] Chaabane D., Brahmi B., Ramdani Z. The augmented weighted Tchebychev norm for optimizing a linear function over an integer efficient set of a multicriteria linear program. International Transactions in Operational Research. 2012; 19(4):531–545. DOI:10.1111/j.1475-3995.2012.00851.x.

[20] Younsi-Abbaci L., Moulai M. Stochastic optimization over the Pareto front by the augmented weighted Tchebychev program. Computational Technologies. 2021: 26(3):86–106. DOI:10.25743/ICT.2021.26.3.006.

[21] Luque M., Ruiz F., Steuer R.E. Modified interactive Chebyshev algorithm (MICA) for convex multiobjective programming. European Journal of Operations Research. 2010; (78):557–564.

[22] Steuer R.E. Multiple criteria optimization: Theory, computation and applications. N.-Y.: John Wiley & Sons; 1986: 546.

Bibliography link:
Brahmi B., Ramdani Z. A constrained weighted Tchebychev program for multiple objective integer linear programming // Computational technologies. 2022. V. 27. ¹ 2. P. 91-104
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT