Article information
2021 , Volume 26, ¹ 5, p.30-51
Pronkin S.N., Shokina N.Y.
Generalized staircase model of electrochemical impedance of pores in supercapacitor electrodes
A new generalized staircase model of the electrochemical impedance is presented for porous electrode materials in energy storage devices. A brief overview on existing models of interfacial impedance and their limitations is given. The new model is based on the conventional staircase model of the impedance in cylindrical pores. However, the new model takes into account the complex porous structure of electrode materials. In particular, the impedance of hierarchical branching porous electrodes is described, i.e. the wide pores branching into the narrower pores. The new model allows to evaluate the impedance of the electrode/electrolyte interface in the presence of both non-faradaic and faradaic processes. The model is validated using the available exact solutions and experimental data for simple pore geometries. The influence of the parameters of structure of model porous electrodes on their performance in supercapacitors is studied. In particular, the influence of the diameter of the pores, width of pore openings, branching of pores is analyzed. The guideline for focused design of electrode materials of supercapacitors is outlined.
[full text] Keywords: staircase model, interfacial impedance, recursive equations, model systems
doi: 10.25743/ICT.2021.26.5.004
Author(s): Pronkin Sergey Nikolaevich PhD. , Associate Professor Position: Associate Professor Office: Institute Institute of Chemistry and Processes for Energy, Environment, and Health Address: 67087, France, Strasbourg, Rue Becquerel, 25
Phone Office: (333) 68 85 26 34 E-mail: sergey.pronkin@unistra.fr Shokina Nina Yurievna PhD. Position: Research Scientist Office: Medical Center University of Freiburg Address: 79106, Germany, Freiburg, Killianstrasse, 5a
Phone Office: (49761) 270 73930 E-mail: nina.shokina@uniklinik-freiburg.de SPIN-code: 8680-7439 References: [1] Diesendorf M., Elliston B. The feasibility of 100 % renewable electricity systems: A response to critics. Renewable and Sustainable Energy Reviews. 2018; (93):318330. DOI:10.1016/j.rser.2018.05.042.
[2] Simon P., Gogotsi Yu., Dunn B. Where do batteries end and supercapacitors begin? Science. 2014; 343(6176):12101211. DOI:10.1126/science.1249625.
[3] Gogotsi Yu., Simon P. True performance metrics in electrochemical energy storage. Science. 2011; 334(6058):917918. DOI:10.1126/science.1213003.
[4] MacDonald D.D. Reflections on the history of electrochemical impedance spectroscopy. Electrochimica Acta. 2006; 51(89):13761388. DOI:10.1016/j.electacta.2005.02.107.
[5] Damaskin B.B., Petrii O.A., Tsirlina G.A. Development of models of electrical double layer. Electrochemistry. Moscow: Chemistry; 2001: 350353. (In Russ.)
[6] Prieto F., Alvarez-Malmagro J., Rueda M. Electrochemical impedance spectroscopystudy of the adsorption of adenine on Au(111) electrodes as a function of the pH. Journal of Biomechanics. 2017; 793(111):209217. DOI:10.1016/j.jelechem.2017.03.021.
[7] De Levie R. On the impedance of electrodes with rough interfaces. Journal of Electroanalytical Chemistry. 1989; 261(1):19. DOI:10.1016/0022-0728(89)87121-9.
[8] Keiser H., Beccu K.D., Gutjahr M.A. Abschatzung der porenstruktur por¨oser elektroden aus impedanzmessungen. Electrochimica Acta. 1976; 21(8):539543. DOI:10.1016/0013- 4686(76)85147-X. (In Germ.)
[9] Candy J.-P., Fouilloux P., Keddam M., Takenouti H. The characterization of porous electrodes by impedance measurements. Electrochimica Acta. 1981; 26(8):10291034. DOI:10.1016/0013-4686(81)85072-4.
[10] Eikerling M., Kornyshev A.A., Lust E. Optimized structure of nanoporous carbonbased double-layer capacitors. Journal of the Electrochemical Society. 2005; 152(1):E24E33. DOI:10.1149/1.1825379.
[11] Soboleva T., Zhao X., Malek K., Xie Zh., Navessin T., Holdcroft S. On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Applied Materials and Interfaces. 2010; 2(2):375384. DOI:10.1021/am900600y.
[12] Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., Taberna P.L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science. 2006; 313(5794):17601763. DOI:10.1126/science.1132195.
[13] Lopez L., Kim Y., Jierry L., Hemmerle J., Boulmedais F., Schaaf P., Pronkin S., Kotov N.A. Electrochemistry on stretchable nanocomposite electrodes: Dependence onstrain. ACS Nano. 2018; 12(9):92239232. DOI:10.1021/acsnano.8b03962.
[14] Eikerling M. Water management in cathode catalyst layers of PEM fuel cells. Journal of the Electrochemical Society. 2006; 153(3):E58E63. DOI:10.1149/1.2160435.
[15] Housseinou B., Wang W., Pronkin S., Romero T., Baaziz W., Nguyen-Dinh L., Chu W., Ersen O., Pham-Huu C. Biosourced foam-like activated carbon materialsas high-performance supercapacitors. Advanced Sustainable Systems. 2018; (1700123):112. DOI:10.1002/adsu.201700123. Bibliography link: Pronkin S.N., Shokina N.Y. Generalized staircase model of electrochemical impedance of pores in supercapacitor electrodes // Computational technologies. 2021. V. 26. ¹ 5. P. 30-51
|