Article information

2021 , Volume 26, ¹ 5, p.81-94

Snytnikov A.V., Lazareva G.G.

Computational methods of continuum mechanics for exaflop computer systems

The article deals with applied issues which arise when exascale computing are used to solve applied problems. Based on the review of works in this area, the most pressing issues related to exascale calculations are highlighted. Particular attention is paid to software features, algorithms and numerical methods for exaflop supercomputers. The requirements for such programs and algorithms are formulated. Based on the review of existing approaches related to achieving high performance, the main fundamentally different and non-overlapping directions for improving the performance of calculations are highlighted. The question of the necessity for criteria of applicability for computational algorithms for exaflop supercomputers is raised. Currently, the only criterion which is used, demands the absence of a significant drop in efficiency in the transition from a petaflop calculation to a ten-petaflop calculation. In the absence of the possibility of such calculations, simulation modelling can be carried out. Examples of development for new and adaptation of existing algorithms and numerical methods for solving problems of continuum mechanics are given. The fundamental difference between algorithms specially designed for exascale machines and algorithms adapted for exaflops is shown. The analysis of publications has showed that in the field of solving problems of continuum mechanics, the approach not associated with the development of new, but rather with the adaptation of existing numerical methods and algorithms to the architecture of exaflop supercomputers prevails. The analysis of the most popular applications is made. The most relevant application of exaflop supercomputers in this area is computational fluid dynamics. This is because hydrodynamic applications are rich and diverse field. The number of publications indicates that the involvement of high-performance computing now is available and in demand.

[full text]
Keywords: exaflops calculations, mathematical modelling of problems in continuum mechanics, numerical methods

doi: 10.25743/ICT.2021.26.5.007

Author(s):
Snytnikov Aleksey Vladimirovich
Position: Research Scientist
Office: Institute of Computational Mathematics and Mathematical Geophysics SB RAS
Address: 630090, Russia, Novosibirsk, prospect Akademika Lavrentjeva, 6
Phone Office: (383) 330-96-65
E-mail: snytav@ssd.sscc.ru

Lazareva Galina Gennadievna
Dr. , Correspondent member of RAS, Professor
Office: Peoples Friendship University of Russia
Address: 117198, Russia, Moscow, 6, Miklukho-Maklaya Street
E-mail: lazareva-gg@rudn.ru

References:
1. Dongarra J., Beckman P., Moore T., Aerts P., Aloisio G., Andre J.-C., Barkai D., Berthou J.-Y., Boku T., Braunschweig B., Cappello F., Chapman B., Chi X., Choudhary A., Dosanjh S., Dunning T., Fiore S., Geist A., Gropp B., Harrison R.,
Hereld M., Heroux M., Hoisie A., Hotta K., Jin Z., Ishikawa Y., Johnson F., Kale S., Kenway R., Keyes D., Kramer B., Labarta J., Lichnewsky A., Lippert T., Lucas B., Maccabe B., Matsuoka S., Messina P., Michielse P., Mohr B., Mueller M.S., Nagel W.E., Nakashima H., Papka M.E., Reed D., Sato M., Seidel E., Shalf J., Skinner D., Snir M., Sterling T., Stevens R., Streitz F., Sugar B., Sumimoto S., Tang W., Taylor J., Thakur R., Trefethen A., Valero M., van der Steen A., Vetter J., Williams P., Wisniewski R., Yelick K. The international exascale software project roadmap. The International Journal of High Performance Computing Applications. 2011; 25(1):3–60. DOI:10.1177/1094342010391989.

2. Gropp W., Snir M. Programming for exascale computers. Computing in Science Engineering. 2013; 15:27–35. DOI:10.1109/MCSE.2013.96.

3. Keyes D.E. Exaflop/s: The why and the how. Comptes Rendus Mecanique. 2011; 339(2):70–77. DOI:10.1016/j.crme.2010.11.002.

4. Hey T., Agarwal D., Borgman C., Cartaro C., Crivelli S., Van Dam K.K., Luce R., Arjun S., Trefethen A., Wade A., Williams D. Doe advanced scientific computing advisory committee (ASCAC) subcommittee report on scientific and technical information, United States. September 2015. DOI:10.2172/1222717.

5. Chetverushkin B.N., Yakobovskiy M.V. Vychislitel’nye algoritmy i arkhitektura sistem vysokoy proizvoditel’nosti [Computational algorithms and architecture of high performane computers]. Moscow; 2018: 52:12. (Preprint of Keldysh Applied Mathematics Institute No. 52). (In Russ.)

6. Voevodin V.V., Popova N.N. Infrastructure of supercomputing technologies. Programming and Computer Software. 2019; 45(3):89–95. DOI:10.1134/S0361768819030071.

7. Tyutlyeva E.O., Odintsov I.O., Moskovskiy A.A., Marmuzov G.V. Development trends for computational nodes of modern supercomputers. Bulletin of South Ural State University. SeriesComputational Mathematics and Software Engineering. 2019; 8(3):92–114. DOI:10.14529/cmse190305. (In Russ.)

8. Stepanenko S.A. Estimates on acceleration of computations for hybrid systems. Plenarnye doklady Pyatoy Mezhdunarodnoy Konferentsii “Parallel’nye vychisleniya i zadachi upravleniya” [Plenary talks of the 5th International Conference “Parallel computing and control problems”]. 2010: 29–39. (In Russ.)

9. Gropp W. MPI at exascale: Challenges for data structures and algorithms. Proceedings of the 16th European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface. Berlin, Heidelberg, Springer-Verlag; 2009: 3–3. DOI:10.1007/978-3-642-03770-2_3.

10. Il’in V.P. Fundamental issues of mathematical modelling. Herald of the Russian Academy of Sciences. 2016; 86(2):118–126. DOI:10.1134/S101933161602009X.

11. Da Costa G., Fahringer T., Gallego J.A.R., Grasso I., Hristov A., Karatza H., Lastovetsky A., Marozzo F., Petcu D., Stavrinides G., Talia D., Trunfio P., Astsatryan H. Exascale machines require new programming paradigms and runtimes. Supercomputing Frontiers and Innovations. 2015; 2(2):6–27. DOI:10.14529/jsfi150201.

12. Yamamoto K., Uno A., Murai H., Tsukamoto T., Shoji F., Matsui S., Sekizawa R., Sueyasu F., Uchiyama H., Okamoto M., Ohgushi N., Takashina K., Wakabayashi D., Taguchi Y., Yokokawa M. The K computer operations: Experiences and statistics. Procedia Computer Science, International Conference on Computational Science. 2014; (29):576–585.
DOI:10.1016/j.procs.2014.05.052.

13. Ettrich J., Nestler B. Diffuse interface method for fluid flow and heat transfer in cellular solids. Advances in Engineering Software. 2015; (87):1–12. DOI:10.1016/j.advengsoft.2015.04.012.

14. Malyshkin V.E. Functionality in ASSY system and language of functional programming. Proceedings the First Aizu International Symposium on Parallel Algorithms/Architecture Synthesis. 1995: 92–97. DOI:10.1109/AISPAS.1995.401350.

15. Voevodin V.V. Parallelism in large software packages (why is it difficult to create efficient software). Chebyshevskii Sbornik. 2017; 18(3):188–201. DOI:10.22405/2226-8383-2017-18-3-188-201. (In Russ.)

16. Duy T.V.T., Ozaki T. A three-dimensional domain decomposition method for large-scale dft electronic structure calculations. Computer Physics Communications. 2014; 185(3):777–789. DOI:10.1016/j.cpc.2013.11.008.

17. Grigori L., Demmel J.W., Xiang H. Communication avoiding gaussian elimination. SC’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. Austin, Texas, November 2008: 1–12.

18. Stepanenko S.A., Yuzhakov V.V. Exaflops supercomputers. Outline of architecture. Software Systems: Theory and Applications. 2013; 4(4):61–90. (In Russ.)

19. Zheng N., Gu H., Huang X., Chen X. Csquare: A new kilo-core-oriented topology. Microprocessors and Microsystems. 2015; 39(4–5):313–320. DOI:10.1016/j.micpro.2015.03.008.

20. Demmel J. Communication avoiding algorithms. SC Companion: High Performance Computing, Networking Storage and Analysis. 2012: 1942–2000. DOI:10.1109/SC.Companion.2012.351.

21. Kalinnik N., Korch M., Rauber T. Online auto-tuning for the time-step-based parallel solution of odes on shared-memory systems. Journal of Parallel and Distributed Computing. 2014; 74(8):2722–2744. DOI:10.1016/j.jpdc.2014.03.006.

22. Mininni P.D., Rosenberg D., Reddy R., Pouquet A. A hybrid MPI-openMP scheme for scalable parallel pseudospectral computations for fluid turbulence. Parallel Computing. 2011; 37(6–7):316–326. DOI:10.1016/j.parco.2011.05.004.

23. Succi S., Amati G., Bernaschi M., Falcucci G., Lauricella M., Montessori A. Towards exascale lattice Boltzmann computing. Computers Fluids. 2019; 181:107–115. DOI:10.1016/j.compfluid.2019.01.005.

24. Rodionov A., Chernikh I., Glinskij B., Kulikov I.M., Marchenko M., Podkoritov D. Using simulation system agnes for modeling execution of parallel algorithms on supercomputers computers. Proceedings of the 2014 International Conference on System, Control, Signal Processing and Informatics (SCSI’2014). Prague, Czech Republic, April 2–4, 2014. 2014: 66–70.

25. Dosanjh S., Barrett R., Doerfler D., Hammond S., Hemmert K., Heroux M., Lin P., Pedretti K., Rodrigues A., Trucano T., Luitjens J. Exascale design space exploration and codesign. Future Generation Computer Systems. Special Issue on Extreme Scale Parallel Architecturesand Systems, Cryptography in Cloud Computing and Recent Advances in Parallel and Distributed Systems, ICPADS 2012 Selected Papers. 2014; (30):46–58. DOI:10.1016/j.future.2013.04.018.

26. Subotic V., Brinkmann S., Marjanovic V., Badia R.M., Gracia J., Niethammer C., Ayguade E., Labarta J., Valero M. Programmability and portability for exascale: Top down programming methodology and tools with starSs. Journal of Computational Science. Scalable Algorithms for Large-Scale Systems Workshop (ScalA2011), Supercomputing 2011. 2013;
4(6):450–456. DOI:10.1016/j.jocs.2013.01.008.

27. Krause D., Krause R. Enabling local time stepping in the parallel implicit solution of reactiondiffusion equations via space-time finite elements on shallow tree meshes. Applied Mathematics and Computation. 2016; (277):164–179. DOI:10.1016/j.amc.2015.12.017.

28. Norman M.R. Developing a large time step, robust, and low communication multi-moment PDE integration scheme for exascale applications. Procedia Computer Science. International Conference On Computational Science, ICCS 2015 Computational Science at the Gates of Nature. 2015; (51):1848–1857. DOI:10.1016/j.procs.2015.05.413.

29. Abramson D., Lees M., Krzhizhanovskaya V.V., Dongarra J., Sloot P.M. Big data meets computational science, preface for ICCS 2014. Procedia Computer Science. 2014 International Conference on Computational Science. 2014; (29):1–7. DOI:10.1016/j.procs.2014.04.002.

30. Glinskiy B.M., Kulikov I.M., Snytnikov A.V., Romanenko A.A., Chernykh I.G., Vshivkov V.A. Co-design of parallel numerical methods for plasma physics and astrophysics. Supercomputing Frontiers and Innovations. 2014; 1(3):88–98. DOI:10.14529/jsfi140305.

31. Poghosyan G., Matta S., Streit A., Bejger M., Krolak A. Architecture, implementation and parallelization of the software to search for periodic gravitational wave signals. Computer Physics Communications. 2015; (188):167–176. DOI:10.1016/j.cpc.2014.10.025.

32. Jacobsen D.A., Senocak I. Multi-level parallelism for incompressible flow computations on GPU clusters. Parallel Computing. 2013; 39(1):1–20. DOI:10.1016/j.parco.2012.10.002.

33. Liu F., Sosonkina M. A multilevel parallelism support for multi-physics coupling. Procedia Computer Science. Proceedings of the International Conference on Computational Science, ICCS 2011. 2011; (4):261–270. DOI:10.1016/j.procs.2011.04.028.

34. Rycerz K., Ciepiela E., Dyk G., Groen D., Gubala T., Harezlak D., Pawlik M., Suter J., Zasada S., Coveney P., Bubak M. Support for multiscale simulations with molecular dynamics. Procedia Computer Science. 2013 International Conference on Computational Science. 2013; (18):1116–1125. DOI:10.1016/j.procs.2013.05.277.

35. Chakroun I., Melab N., Mezmaz M., Tuyttens D. Combining multi-core and gpu computing for solving combinatorial optimization problems. Journal of Parallel and Distributed Computing. Heterogeneity in Parallel and Distributed Computing. 2013; 73(12):1563–1577. DOI:10.1016/j.jpdc.2013.07.023.36. Jin H., Jespersen D., Mehrotra P., Biswas R., Huang L., Chapman B. High performance computing using mpi and openmp on multi-core parallel systems. Parallel Computing. Emerging Programming Paradigms for Large-Scale Scientific Computing. 2011; 37(9):562–575.
DOI:10.1016/j.parco.2011.02.002.

37. Emad N., Petiton S. Unite and conquer approach for high scale numerical computing. Journal of Computational Science. 2016; (14):5–14. DOI:10.1016/j.jocs.2016.01.007.

38. Pratapa P.P., Suryanarayana P., Pask J.E. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems. Journal of Computational Physics. 2016; (306):43–54. DOI:10.1016/j.jcp.2015.11.018.

39. Agullo E., Giraud L., Guermouche A., Roman J. Parallel hierarchical hybrid linear solvers for emerging computing platforms. Comptes Rendus Mecanique. High Performance ComputingLe Calcul Intensif. 2011; 339(2–3):96–103. DOI:10.1016/j.crme.2010.11.005.

40. Alexandrov V., Martel C.G., Strassburg J. Montecarlo scalable algorithms for computational finance. Procedia Computer Science. Proceedings of the International Conference on Computational Science, ICCS 2011. 2011; (4):1708–1715. DOI:10.1016/j.procs.2011.04.185.

41. Chetverushkin B.N. Limits of detalization continuous media mode and their mathematical formulations. Mathematical Models and Computer Simulations. 2013; (5):266–279. DOI:10.1134/S2070048213030034.

Bibliography link:
Snytnikov A.V., Lazareva G.G. Computational methods of continuum mechanics for exaflop computer systems // Computational technologies. 2021. V. 26. ¹ 5. P. 81-94
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT