Article information
2021 , Volume 26, ¹ 2, p.4-20
Nasibullayev I.S., Darintsev O.V.
Computer 2D modelling of a micro-grip fluid cooling system
Numerical simulation of a micro-grip chamber fluid cooling system is presented. The mathematical models for mass and heat transfer in a fluid, heat exchange between the fluid and the radiator as well as the heat exchange between the radiator and the Peltier element are constructed in a variational form. The equations of hydrodynamics and heat equations were simulated by the finite element method in the FreeFem++ software. The influence of the geometric and physical parameters of the cooling system chamber on the efficiency of the device is determined. It is shown that as the heat transfer coefficient between the radiator and the fluid and the velocity of the coolant increases, the maximum steady-state temperature on the radiator nonlinearly decreases with saturation. When flow of coolant oscillates then the temperature on the radiator so does with the flow frequency. As the flow frequency increases, the amplitude of temperature fluctuations decreases. The increasing amplitude of flow oscillations leads to the amplification of the temperature amplitude. Using orthogonal central compositional method, the influence of the parameters (heat transfer coefficient, fluid velocity) on the efficiency of the cooling system is found, and the contribution of pairwise interaction is determined. Based on the results of numerical modelling, simple analytical formulas are proposed that can be used in the software module of the micro-grip cooling control system.
[full text] [link to elibrary.ru]
Keywords: hydrodynamics, heat transfer, micro-grip, finite element method, orthogonal central composition planpin
doi: 10.25743/ICT.2021.26.2.002
Author(s): Nasibullayev Ildar Shamilevich PhD. Position: Research Scientist Office: Mavlutov Institute of Mechanics Address: 450054, Russia, Ufa, Pr. Oktyabrya street, Ufa
Phone Office: (347)2355255 E-mail: sp.ishn@gmail.com SPIN-code: 9936-2067Darintsev Oleg Vladimirovich Dr. , Associate Professor Position: General Scientist Office: Mavlutov Institute of Mechanics Address: 450054, Russia, Ufa, 71, Pr. Oktyabrya street
Phone Office: (347)235-52-55 E-mail: ovd@uimech.org SPIN-code: 1839-0489 References: 1. Kaka¸c S., Kosoy B., Li D., Pramuanjaroenkij A. Microfluidics based microsystems: Fundamentals and applications. Springer; 2010: 618. DOI:10.1007/978-90-481-9029-4.
2. Cotta R.M., Knupp D.C., Naveira-Cotta C.P. Analytical heat and fluid flow in microchannels and microsystems. Springer; 2016: 164. DOI:10.1007/978-3-319-23312-3.
3. Dietzel A. Microsystems for pharmatechnology. Manipulation of fluids, particles, droplets, and cells. Springer; 2016: 348. DOI:10.1007/978-3-319-26920-7.
4. Kakac S., Y¨uncu H., Hijikata K. Cooling of electronic systems. Springer Netherlands; 1994: 962. DOI:10.1007/978-94-011-1090-7.
5. Gad-el-Hak M. MEMS. Applications. CRC Press; 2005: 568.
6. Darintsev O.V., Migranov A.B. Capillary micro-grip with feedback. Patent RF No. 2261795 RU, 2005. (In Russ.).
7. Afshari F. Experimental and numerical investigation on thermoelectric coolers for comparing air-towater to air-to-air refrigerators. Journal of Thermal Analysis and Calorimetry. 2020; DOI:10.1007/s10973-020-09500-6.
8. Laser D.J., Santiago J.G. A review of micro pumps. Journal of Micromechanics and Microengineering. 2004; (14):R35–R64. DOI:10.1088/0960-1317/14/6/R01.
9. Bruus H. Theoretical microfluidics. Lecture notes third edition. MIC Department of Micro and Nanotechnology Technical University of Denmark; 2006: 247.
10. Nasibullayev I.Sh., Nasibullaeva E.Sh. Fluid flow through the hydraulic resistance with a dynamically variable geometry. Proceedings of the Mavlyutov’s Institute of Mechanics USC RAS. 2017; 12(1):59–66. DOI:10.21662/uim2017.1.009. (In Russ.)
11. Nasibullayev I.Sh., Nasibullaeva E.Sh., Darintsev O.V. Study of fluid flow through a channel deformed by piezoelement. Multiphase Systems. 2018; 13(3):1–10. DOI: 10.21662/mfs2018.3.001 (In Russ.).
12. Nasibullayev I.Sh., Nasibullaeva E.Sh., Darintsev O.V. Simulation of fluid flow through a elastic microchannel deformed by a piezoelement in microgrip cooling systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019; 20(12):740–750. DOI:10.17587/mau.20.740-750. (In Russ.)
13. Nasibullayev I.Sh., Darintsev O.V. Two-dimensional dynamic model of the interaction of a fluid and a piezoelectric bending actuator in a plane channel. Multiphase Systems. 2019; 14(4):220–232. DOI:10.21662/mfs2019.4.029. (In Russ.).
14. Adler U.P., Markova E.V., Granovskiy U.V. Experiment plans with selecting the optimal conditions. Moscow: Nauka; 1976: 280. (In Russ.).
15. Nasibullayev I.Sh. The development of a computer model for the main element of the fuel metering unit. Computational Technologies. 2016; 21(2):26–41. (In Russ.)
16. Landau L.D., Lifshitz E.M.. Fluid mechanics. Vol. 6 (2nd ed.). Butterworth-Heinemann; 1987: 552.
17. Patankar S.V. Numerical heat transfer and fluid flow. Taylor and Francis; 1980: 197.
18. Hecht F. New development in FreeFem++. J. Numer. Math. 2012; 20(3–4):251–265. DOI:10.1515/jnum-2012-0013.
19. Roache P.J. Computational fluid dynamics. Hermosa Publishers; 1976: 446.
20. GOST 15527–2004. Pressure treated copper-zinc alloys (brass) (In Russ.)
21. Shlyakhin P.N., Bershadsky M.L. A brief guide to steam turbine plants. M.; L.: Gosenergoizdat; 1961: 128. (In Russ.)
22. Nasibullayev I.Sh., Nasibullaeva E.Sh. The effect of temperature on the fluid flow dynamics in technical systems with jets. Proceedings of the Mavlutov Institute of Mechanics USC RAS. 2016; 11(1):1–9. DOI:10.21662/uim2016.1.001. (In Russ.)
23. Volkov A.I., Zharsky I.M. Big chemical reference book. Mn: Sovremennaya Shkola; 2005: 608. (In Russ.) Bibliography link: Nasibullayev I.S., Darintsev O.V. Computer 2D modelling of a micro-grip fluid cooling system // Computational technologies. 2021. V. 26. ¹ 2. P. 4-20
|