Article information
2020 , Volume 25, ¹ 4, p.99-113
Lepikhin A.M., Makhutov N.A., Shokin Y.I., Yurchenko A.V.
Analysis of risk concept for technical systems using digital twins
Development of technology and technical systems significantly increases in the volume of information. Traditional methods for designing, manufacturing and operating of technical systems do not allow processing such volumes of information. In this regard, the modern strategy for creating technical systems is based on the use of digital twins. Solving the problems of risk analysis and risk management for technical systems at all stages of the life cycle appears to be one of the promising areas for application of the digital twins technology. Despite of active research, using digital twins in risk analysis currently do not have appropriate methodological justifications and technical solutions in a number of key aspects. In particular, effective reductions of the order of risk models and quantifying uncertainty factors of various types have not been solved. The concept of the risk-informed decision making in product lifecycle management has not been implemented. In fact, there are very few publications on the risk analysis and risk management methodology using digital twins. The article discusses the main methodological aspects of risk analysis of technical systems using digital twins. The concept of risk analysis is formulated and a basic model for its implementation is proposed. The informational aspects of the analysis of uncertainties of the risk model are considered. It is shown that digital twin technologies allow effective combination of the results of computer modelling with the data monitoring of real objects, providing a deeper analysis of objects, taking into account a variety of design options, technologies and operating conditions
[full text] Keywords: technical systems, digital twins, risk model, information, uncertainties, risk analysis
doi: 10.25743/ICT.2020.25.4.009
Author(s): Lepikhin Anatolii Mikhaylovich Dr. , Professor Position: General Scientist Office: Federal research center of information and computational technologies,NTC NefteGazDiagnostica Address: 630090, Russia, Novosibirsk, Academician M.A. Lavrentiev Avenue 6
Phone Office: (985) 195-33-22 E-mail: krasn@ict.nsc.ru SPIN-code: 3072-6366Makhutov Nikolay Andreevich Dr. , Professor Position: General Scientist Office: Blagonravov Mechanical Engineering Research Institute RAS Address: 101990, Russia, Moscow, 4 Maly Kharitonyevsky Pereulok
Phone Office: (985) 780-39-07 E-mail: kei51@mail.ru SPIN-code: 4499-0720Shokin Yuriy Ivanovich Dr. , Academician RAS, Professor Position: Scientific Director of the Institute Office: Federal Research Center for Information and Computational Technologies Address: 630090, Russia, Novosibirsk, Ac. Lavrentiev ave., 6
Phone Office: (383) 334 91 10 E-mail: shokin@ict.nsc.ru SPIN-code: 6442-4180Yurchenko Andrey Vasilyevich PhD. Position: director Office: Federal Research Center for Information and Computational Technologies Address: 630090, Russia, Novosibirsk, ac. Lavrentyev Ave. 6
Phone Office: (383) 334-91-16 E-mail: yurchenko@ict.sbras.ru
References:
1. Makhutov N.A. Bezopasnost’ i prochnost’. Fundamental’nye i prikladnye issledovaniya [Safety anddurability. Basic and applied research]. Novosibirsk: Nauka; 2008: 528. (In Russ.)
2. Zio E. The future of risk assessment. Reliability engineering and system safety. Elsevier; 2018: 176–190. DOI:10.1016/j.ress.2018.04.020.hal-01988966.
3. Jones D., Snider C., Nassehi A., Yon Ja., Hicks B. Characterizing the digital twin: A systematicliterature review. CIRP Journal of Manufacturing Science and Technology. 2020; Part A. (29):36–52. Available at: https://doi.org/10.1016/j.cirpj.2020.02.002 (accessed 05.08.2020).
4. Deuter A. The digital twin theory. DOI:10.30844/I40M_19-1_S27-30. Avaiable at: https://www. researchgate.net/publication/330883447 (accessed 05.08.2020).
5. Qi Q., Tao F., Hu T., Anwer N. Enabling technologies and tools for digital twin. DOI:10.1016/j.jmsy.2019. 10.001. Avaiable at: https://www.researchgate.net/publication/336870688 (accessed 05.08.2020).
6. GOST R ISO/MEK 13355-1-2006. Informatsionnye tekhnologii. Metody i sredstva obespecheniyabezopasnosti. Chast’ 1. Kontseptsiya i modeli menedzhmenta bezopasnosti informatsionnykh i telekommunikatsionnykh tekhnologiy [Information Technology. Security methods and tools. Part 1. Concept and models of security management of information and telecommunication technologies].
7. Kaplan S., Garrick B. On the quantitative definition of risk. Risk Anaysis. 1981; 1(1):11–27.
8. Wilson R. Crouch E.A.C. Risk benefit analysis. Cambridge, MA: Ballinger; 1982: 218.
9. Rausand M. Risk assessment. Theory, methods, and applications. Hoboken: Wiley & Sons; 2011: 649.
10. Sotic A., Rajic R. The rewiev of the definition of risk. Online Journal of Applied Knowledge Management. 2015; 3(3):17–26.
11. Pardue N. Advanced methods for the risk, vulnerability and resilience assessment of safety-criticalengineering components, systems and infrastructures, in the presence of uncertainties. Avaiable at: https://hal.archives-ouvertes.fr (accessed 05.08.2020).
12. Makhutov N.A., Petrov V.P., Reznikov D.O. Assesment of complex technical systems robustness.Safety and Emergencies Problems. 2009; (3):47–66. (In Russ.)
13. Lepikhin A., Moskvichev V., Machutov N. Probabilistic modelling in solving analytical problemsof system engineering. Probabilistic Modeling in System Engineering. London: IntechOpen Limited; 2018: 3–22. ISBN:978-1-78923-775-7. DOI:10.5772/intechopen.75686.
14. Aven T. Risk, surprises and black swans: fundamental ideas and concepts in risk assessment and riskmanagement. Abingdon: Routledge; 2014: 276. ISBN:9781315755175.
15. Aven T. On some recent definitions and analysis frameworks for risk, vulnerability, and resilience.Risk Analysis. 2011; 31(4):515–22. DOI:10.1111/j.1539-6924.2010.01528.x
16. Lepikhin A.M., Makhutov N.A., Moskvichev V.V., Chernyaev A.P. Veroyatnostnyy risk-analizkonstruktsii tekhnicheskikh sistem [Probabilistic risk analysis of technical systems constructions]. Novosibirsk: Nauka; 2003: 174.
17. Kelly D., Smith Ch. Bayesian inference for probabilistic risk assessment. A practitioner’s guidebook.Springer Series in Reliability Engineering. Springer-Verlag London: Springer-Verlag London Limited; 2011: 238. DOI:10.1007/978-1-84996-187-5.
18. Dahmen U., Rossman J. Experimentable digital twins for a modeling and simulation-based engineeringapproach. Avaiable at: https://www.researchgate.net/publication/329298561 (accessed 05.08.2020).
19. Qi Q., Tao F., Hu T., Anwer N., Liu A., Wei Y., Wang L. Enabling technologies and tools for digitaltwin. Available at: https://doi.org/10.1016/j.jmsy.2019.10.001 (accessed 05.08.2020).
20. Computation stochastic mechanics. Ed. P.D. Spanos, C.A. Brebbia. Springer Netherlands; 1991: 898.
21. Soize C. Stochastic models of uncertainties in computational mechanics. American Society of CivilEngineers. 2012: 125–134. ISBN:978-0-7844-7686-4.
22. Shayanfar M.A., Barkhordari M.A., Roudak M.A. An adaptive importance sampling-based algorithmusing the first order method for structural reliability. International Journal of Optimization in Civil Engineering. 2017; 7(1):93–107.
23. Au S.K., Beck J.L. Estimation of small failure probabilities in high dimensions by subset simulation.Probabilistic Engineering Mechanics. 2001. 16:263–277. DOI:10.1016/S0266-8920(01)00019-4. Bibliography link: Lepikhin A.M., Makhutov N.A., Shokin Y.I., Yurchenko A.V. Analysis of risk concept for technical systems using digital twins // Computational technologies. 2020. V. 25. ¹ 4. P. 99-113
|