Article information

2019 , Volume 24, ¹ 4, p.4-27

Shokina N.Y., Teschner G., Bauer A., Tropea C., Egger H., Hennig J., Krafft A.J.

Quantification of wall shear stress in large blood vessels using magnetic resonance imaging

Wall shear stress (WSS) quantifies the frictional force that flowing blood exerts on a vessel wall. Magnetic Resonance Imaging (MRI) enables non-invasive measurements of blood flow velocities that are needed for WSS computation. An introduction into MRI-based WSS quantification in large blood vessels is presented. The possible role of WSS as a potential biomarker in cardiovascular diseases, cardiovascular MRI, MR-based WSS quantification methods, and their accuracy and validation are considered. As an example, the generic nonlinear regression method for MRI-derived WSS quantification in fully developed turbulent stationary pipe flows is presented. The new method is a fully automatic and fast local WSS estimator, which produces accurate estimates independent from the spatial resolution of the measurement and may serve as a reliable reference for validation of more generic WSS estimators prior to their clinical applications.

[full text] [link to elibrary.ru]

Keywords: medical imaging, magnetic resonance imaging, phase-contrast MRI, wall shear stress, flow MRI, MR velocimetry, Clauser plot method

doi: 10.25743/ICT.2019.24.4.002

Author(s):
Shokina Nina Yurievna
PhD.
Position: Research Scientist
Office: Medical Center University of Freiburg
Address: 79106, Germany, Freiburg, Killianstrasse, 5a
Phone Office: (49761) 270 73930
E-mail: nina.shokina@uniklinik-freiburg.de
SPIN-code: 8680-7439

Teschner Gabriel
Position: Research Scientist
Office: Institute for Numerical Analysis and Scientific Computing Department Mathematics Technische Universitat Darmstadt
Address: 64293, Germany, Darmstadt, Dolivostrasse,15
E-mail: teschner@mathematik.tu-darmstadt.de

Bauer Andreas
Position: Student
Office: Institute for Fluid Mechanics and Aerodynamics Technische Universitat Darmstadt
Address: 64287, Germany, Darmstadt, Alarich-Weiss-Strasse, 10
Phone Office: (496151) 16 22190
E-mail: bauer@sla.tu-darmstadt.de

Tropea Cameron
Professor
Position: Professor
Office: Institute for Fluid Mechanics and Aerodynamics Department of Mechanical Engineering Technische Universitat Darmstadt
Address: 64287, Germany, Darmstadt, Alarich-Weiss-Strasse, 10
Phone Office: (496151) 16 22175
E-mail: ctropea@sla.tu-darmstadt.de

Egger Herbert
Professor
Position: Professor
Office: Institute for Numerical Analysis and Scientific Computing Department of Mathematics Technische Universitat Darmstadt
Address: 64293, Germany, Darmstadt, Dolivostrasse,15
E-mail: egger@mathematik.tu-darmstadt.de

Hennig Jurgen
Professor
Position: Professor
Office: Medical Center University of Freiburg Faculty of Medicine
Address: 79106, Germany, Freiburg, Killianstrasse, 5a
Phone Office: (49761) 270 38360
E-mail: juergen.hennig@uniklinik-freiburg.de

Krafft Axel Joachim
Position: Head of Research
Office: Faculty of Medicine Medical Center University of Freiburg
Address: 79106, Germany, Freiburg, Killianstrasse, 5a
Phone Office: (49761) 270 93810
E-mail: axel.krafft@uniklinik-freiburg.de

References:
[1] Kamphuis, V.P., Westenberg, J.J.M., van der Palen, R.L.F., Blom, N.A., de Roos, A., van der Geest, R., Elbaz, M.S.M., Roest, A.A.W. Unravelling cardiovascular disease using four dimensional flow cardiovascular magnetic resonance. Int. J. Cardiovasc. Imaging. 2017; 33(7):1069—1081. doi:10.1007/s10554-016-1031-9.

[2] Dyverfeldt, P., Bissell, M., Barker, A.J., Bolger, A.F., Carlhall, C.-J., Ebbers, T., Francios, C.J., Frydrychowicz, A., Geiger, J., Giese, D., Hope, M.D., Kilner, P.J., Kozerke, S., Myerson, S., Neubauer, S., Wieben, O., Markl, M. 4D flow cardiovascular magnetic resonance consensus statement. J. Cardiovasc. Magn. Reson. 2015; 17(1):72-91. doi:10.1186/s12968-015-0174-5.

[3] Lehoux, S., Tedgui, A. Cellular mechanics and gene expression in blood vessels. Cardiovasc. Biomech. 2003; 36(5):631—643. doi:10.1016/S0021-9290(02)00441-4.

[4] Katritsis, D., Kaiktsis, L., Chaniotis, A., Pantos, J., Efstathopoulos, E.P., Marmarelis, V. Wall shear stress: theoretical considerations and methods of measurement. Progr. Cardiovasc. Diseas. 2007; 49(5):307—329. doi:10.1016/j.pcad.2006.11.001.

[5] Potters, W.V., Marquering, H.A., VanBavel, E., Nederveen, A.J. Measuring wall shear stress using velocity-encoded MRI. Curr. Cardiovasc. Imaging Rep. 2014; 7(4):9257–9269. doi:10.1007/s12410-014-9257-1.

[6] Callaghan, F.M., Grieve, S.M. Normal patterns of thoracic aortic wall shear stress measured using four-dimensional flow MRI in a large population. Am. J. Physiol.-Heart Circ. Physiol. 2018; 315(5):H1174—H1181. doi:10.1152/ajpheart.00017.2018.

[7] Kolipaka, A., Illapani, V.S.P., Kalra, P., Garcia, J., Mo, X., Markl, M., White, R.D. Quantification and comparison of 4D-flow MRI-derived wall shear stress and MRE-derived wall stiffness of the abdominal aorta. J. Magn. Reson. Imaging. 2017; 45(3):771–778. doi:10.1002/jmri.25445.

[8] Shaaban, A.M., Duerinckx, A.J. Wall shear stress and early atherosclerosis. Am. J. Roentgenol. 2000; 174(6):1657–1665. doi:10.2214/ajr.174.6.1741657.

[9] Peiffer, V., Sherwin, S.J., Weinberg, P.D. Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. Cardiovasc. Res. 2013; 99(2):242–250. doi:10.1093/cvr/cvt044.

[10] von Knobelsdorff-Brenkenhoff, F., Karunaharamoorthy, A., Trauzeddel, R.F., Barker, A.J., Blaszczyk, E., Markl, M., Schulz-Menger, J. Evaluation of aortic blood flow and wall shear stress in aortic stenosis and its association with left ventricular remodeling.Circ. Cardiovasc. Imaging. 2016; 9(3):e004038—e004038. doi:10.1161/CIRCIMAGING.115.004038.

[11] Burk, J., Blanke, P., Stankovic, Z., Barker, A., Russe, M., Geiger, J., Frydrychowicz, A., Langer, M., Markl, M. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J. Cardiovasc. Magn. Reson. 2012; 14(1):84–95. doi:10.1186/1532-429X-14-84.

[12] Natsume, K., Shiiya, N., Takehara, Y., Sugiyama, M., Satoh, H., Yamashita, K., Washiyama, N. Characterizing saccular aortic arch aneurysms from the geometry-flow dynamics relationship. J. Thorac. Cardiovasc. Surg. 2017; 153(6):1413–1420.e1. doi:10.1016/j.jtcvs.2016.11.032.

[13] Piatti, F., Sturla, F., Bissell, M.M., Pirola, S., Lombardi, M., Nesteruk, I., Della corte, A., Redaelli, A.C.L., Votta, E. 4D flow analysis of BAV-related fluid-dynamic alterations: evidences of wall shear stress alterations in absence of clinically-relevant aortic anatomical remodeling. Front. Physiol. 2017; 8:441. doi:10.3389/fphys.2017.00441.

[14] Barker, A.J., Markl, M., Burk, J., Lorenz, R., Bock, J., Bauer, S., Schulz-Menger, J., von Knobelsdorff-Brenkenhoff, F. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ. Cardiovasc. Imaging. 2012; 5(4):457—466. doi:10.1161/CIRCIMAGING.112.973370.

[15] Mahadevia, R., Barker, A.J., Schnell, S., Entezari, P., Kansal, P., Fedak, P.W.M., Malaisrie, S.C., McCarthy, P., Collins, J., Carr, J., Markl, M. Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation. 2014; 129(6):673-–682. doi:10.1161/CIRCULATIONAHA.113.003026.

[16] Guzzardi, D.G., Barker, A.J., van Ooij, P., Malaisrie, S.C., Puthumana, J.J., Belke, D.D., Mewhort, H.E.M., Svystonyuk, D.A., Kang, S., Verma, S., Collins, J., Carr, J., Bonow, R.O., Markl, M., Thomas, J.D., McCarthy, P.M., Fedak, P.W.M. Valve-related hemodynamics mediate human bicuspid aortopathy: Insights from wall shear stress mapping. J. Am. Coll. Cardiol. 2015; 66(8):892-–900. doi:10.1016/j.jacc.2015.06.1310.

[17] van Ooij, P., Markl, M., Collins, J.D., Carr, J.C., Rigsby, C., Bonow, R.O., Malaisrie, S.C., McCarthy, P.M., Fedak, P.W.M., Barker, A.J. Aortic valve stenosis alters expression of regional aortic wall shear stress: New insights from a 4-dimensional flow magnetic resonance imaging study of 571 subjects. J. Am. Heart Assoc. 2017; 6(9):e005959. doi:10.1161/JAHA.117.005959.

[18] Rodriguez-Palomares, J.F., Dux-Santoy, L., Guala, A., Kale, R., Maldonado, G., Teixido-Tura, G., Galian, L., Huguet, M., Valente, F., Gutierrez, L., Gonzalez-Alujas, T., Johnson, K.M., Wieben, O., Garcia-Dorado, D., Evangelista, A. Aortic flow patterns and wall shear stress maps by 4D-flow cardiovascular magnetic resonance in the assessment of aortic dilatation in bicuspid aortic valve disease. J. Cardiovasc. Magn. Reson. 2018; 20(1):28. doi:10.1186/s12968-018-0451-1.

[19] Bollache, E., Guzzardi, D.G., Sattari, S., Olsen, K.E., Di Martino, E.S., Malaisrie, S.C., van Ooij, P., Collins, J., Carr, J., McCarthy, P.M., Markl, M., Barker, A.J., Fedak, P.W.M. Aortic valve-mediated wall shear stress is heterogeneous and predicts regional aortic elastic fiber thinning in bicuspid aortic valve-associated aortopathy. J. Thorac. Cardiovasc. Surg. 2018; 156(6):2112–2120.e2. doi:10.1016/j.jtcvs.2018.05.095.

[20] Fatehi Hassanabad, A., Garcia, J., Verma, S., White, J.A., Fedak, P.W.M. Utilizing wall shear stress as a clinical biomarker for bicuspid valve-associated aortopathy. Curr. Opin. Cardiol. 2019; 34(2):124–131. doi:10.1097/HCO.0000000000000601.

[21] Geiger, J., Arnold, R., Herzer, L., Hirtler, D., Stankovic, Z., Russe, M., Langer, M., Markl, M. Aortic wall shear stress in Marfan syndrome. Magn. Reson. Med. 2013; 70(4):1137—1144. doi:10.1002/mrm.24562.

[22] Trauzeddel, R.F., Lobe, U., Barker, A.J., Gelsinger, C., Butter, C., Markl, M., SchulzMenger, J., von Knobelsdorff-Brenkenhoff, F. Blood flow characteristics in the ascending aorta after TAVI compared to surgical aortic valve replacement. Int. J. Cardiovasc. Imaging. 2016; 32(3):461—467. doi:10.1007/s10554-015-0792-x.

[23] Farag, E.S., van Ooij, P., Planken, R.N., Dukker, K.C.P., de Heer, F., Bouma, B.J., Robbers-Visser, D., Groenink, M., Nederveen, A.J., de Mol, B.A.J.M., Kluin, J., Boekholdt, S.M. Aortic valve stenosis and aortic diameters determine the extent of increased wall shear stress in bicuspid aortic valve disease. J. Magn. Reson. Imaging. 2018; 48(2):522—530. doi:10.1002/jmri.25956.

[24] Farag, E.S., Vendrik, J., van Ooij, P., Poortvliet, Q.L., van Kesteren, F., Wollersheim, L.W., Kaya, A., Driessen, A.H.G., Piek, J.J., Koch, K.T., Baan, J., Planken, R.N., Kluin, J., Nederveen, A.J., de Mol, B.A.J.M. Transcatheter aortic valve replacement alters ascending aortic blood flow and wall shear stress patterns: A 4D flow MRI comparison with age-matched, elderly controls. Eur. Radiol. 2019; 29(3):1444–1451. doi:10.1007/s00330-018-5672-z.

[25] Garcia, J., Barker, A.J., Markl, M. The role of imaging of flow patterns by 4D flow MRI in aortic stenosis. JACC Cardiovasc. Imaging. 2019; 12(2):252–266. doi:10.1016/j.jcmg.2018.10.034.

[26] van Kesteren, F., Wollersheim, L.W., Baan, Jr., J., Nederveen, A.J., Kaya, A., Boekholdt, S.M., de Mol, B.A., van Ooij, P., Planken, R.N. Four-dimensional flow MRI of stented versus stentless aortic valve bioprostheses. Eur. Radiol. 2018; 28(1):257-–264. doi:10.1007/s00330-017-4953-2.

[27] McRobbie, D.W., Moore, E.A., Graves, M.J., Prince, M.R. MRI from picture to proton. 3rd Edition. Cambridge University Press; 2017: 400.


[28] Nayak, K.S., Nielsen, J.-F., Bernstein, M.A., Markl, M., Gatehouse, P.D., Botnar, R. M., Saloner, D., Christine Lorenz, C., Wen, H., Hu, B.S., Epstein, F.H., Oshinski J.N., Raman, S.V. Cardiovascular magnetic resonance phase contrast imaging. J. Cardiovasc. Magn. Reson. 2015; 17(1):71–97. doi:10.1186/s12968-015-0172-7.

[29] Lee, D.C., Markl, M., Dall’Armellina, E., Han, Y., Kozerke, S., Kuehne, T., Nielles-Vallespin, S., Messroghli, D., Patel, A., Schaeffter, T., Simonetti, O., Valente, A.M., Weinsaft, J.W., Wright, G., Zimmerman, S., Schulz-Menger, J. The growth and evolution of cardiovascular magnetic resonance: a 20-year history of the Society for Cardiovascular Magnetic Resonance (SCMR) annual scientific sessions. J. Cardiovasc. Magn. Reson. 2018; 20(1):8–19. doi:10.1186/s12968-018-0429-z.

[30] Markl, M., Schnell, S., Wu, C., Bollache, E., Jarvis, K., Barker, A.J., Robinson, J.D., Rigsby, C.K. Advanced flow MRI: emerging techniques and applications. Clin. Radiol. 2016; 71(8):779—795. doi:10.1016/j.crad.2016.01.011.

[31] Clauser, F.H. The turbulent boundary layer. Advances in Applied Mechanics. 1956; (4):1–51. doi:10.1016/S00652156(08)70370-3.

[32] Schlichting, H., Gersten, K. Boundary-layer theory. 9rd Edition. Springer-Verlag Berlin Heidelberg; 2017: 814.

[33] Shokina, N., Bauer, A., Teschner, G., Buchenberg, W.B., Tropea, C., Egger, H., Hennig, J., Krafft, A.J. MR-based wall shear stress measurements in fully developed turbulent flow using the Clauser plot method. J. Magn. Reson. 2019; (305):16–21. doi:10.1016/j.jmr.2019.05.009.

[34] Ku, D.N., Giddens, D.P., Zarins, C.K., Glagov, S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler. 1985; 5(3):293–302.

[35] Stankovic, Z., Allen, B.D., Garcia, J., Jarvis, K.B., Markl, M. 4D flow imaging with MRI. Cardiovasc. Diagn. Ther. 2014; 4(2):173–192. doi:10.3978/j.issn.22233652.2014.01.02.

[36] Allen, B.D., Syed, A.A., Bollache, E., Keller, E.J., Barker, A.J., Rose, M.J., Jarvis, K.B., Schnell, S., Markl, M., Carr, J.C., Collins, J.D. Cardiovascular MRI in thoracic aortopathy: A focused review of recent literature updates. Curr. Radiol. Rep. 2017; 5(10):50–59. doi:10.1007/s40134-017-0246-4.

[37] Gulsin, G.S., Singh, A., McCann, G.P. Cardiovascular magnetic resonance in the evaluation of heart valve disease. BMC Med. Imaging. 2017; 17(1):67—81. doi:10.1186/s12880-017-0238-0.

[38] Ko, S., Yang, B., Cho, J.-H., Lee, J., Song, S. Novel and facile criterion to assess the accuracy of WSS estimation by 4D flow MRI. Med. Image Anal. 2019; (53):95–103. doi:10.1016/j.media.2019.01.009.

[39] Markl, M., Schnell, S., Barker, A.J. 4D flow imaging: Current status to future clinical applications. Curr. Cardiol. Rep. 2014; 16(5):481–490. doi:10.1007/s11886-0140481-8.

[40] Ma, L.E., Markl, M., Chow, K., Huh, H., Forman, C., Vali, A., Greiser, A., Carr, J., Schnell, S., Barker, A.J. Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k-space reordering, and inline reconstruction. Magn. Reson. Med. 2019; 81(6):3675–3690. doi:10.1002/mrm.27684.

[41] Irgens, F. Rheology and non-Newtonian fluids. 1st Edition. Springer International Publishing; 2014: 190.

[42] Chandran, K.B., Rittgers, S.E., Yoganathan, A.P. Biofluid mechanics: the human circulation. 2nd Edition. CRC Press; 2012: 451.

[43] Warsi, Z.U.A. Fluid dynamics: theoretical and computational approaches. 3rd Edition. CRC Press; 2005: 872.

[44] Pantos, I., Patatoukas, G., Efstathopoulos, E.P., Katritsis, D. In vivo wall shear stress measurements using phase-contrast MRI. Expert. Rev. Cardiovasc. Ther. 2007; 5(5):927–38. doi:10.1586/14779072.5.5.927.

[45] Stalder, A.F., Russe, M.F., Frydrychowicz, A., Bock, J., Hennig, J., Markl, M. Quantitative 2D and 3D phase contrast MRI: Optimized analysis of blood flow and vessel wall parameters. Magn. Reson. Med. 2008; 60(5):1218–1231. doi:10.1002/mrm.21778.

[46] Papathanasopoulou, P., Zhao, S., Kohler, U., Robertson, M.B., Long, Q., Hoskins, P., Xu, Y.X., Marschall, I. MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions. J. Magn. Reson. Imaging. 2003; 17(2):153–162. doi:10.1002/jmri.10243.

[47] Sotelo, J., Dux-Santoy, L., Guala, A., Rodriguez-Palomares, J., Evangelista, A., SingLong, C., Urbina, J., Mura, J., Hurtado, D.E., Uribe, S. 3D axial and circumferential wall shear stress from 4D flow MRI data using a finite element method and a laplacian approach. Magn. Reson. Med. 2018; 79(5):2816–2823. doi:10.1002/mrm.26927.

[48] Sotelo, J., Urbina, J., Valverde, I., Tejos, C., Irarrazaval, P, Andia, M.E., Hurtado, D.E., Uribe, S. 3D quantification of wall shear stress and oscillatory shear index using a finite-element method in 3D CINE PC-MRI data of the thoracic aorta. IEEE Trans. Med. Imaging. 2016; 35(6):1475–1487. doi:10.1109/TMI.2016.2517406.

[49] Montalba, C., Urbina, J., Sotelo, J., Andia, M.E., Tejos, C., Irarrazaval, P., Hurtado, D.E., Valverde, I., Uribe, S. Variability of 4D flow parameters when subjected to changes in MRI acquisition parameters using a realistic thoracic aortic phantom. Magn. Reson. Med. 2017; 79(4):1882–1892. doi:10.1002/mrm.26834.

[50] Potters, W.V., Ooij, P., Marquering, H., van Bavel, E., Nederveen, A.J. Volumetric arterial wall shear stress calculation based on cine phase contrast MRI. J. Magn. Reson. Imaging. 2015; 41(2):505–516. doi:10.1002/jmri.24560.

[51] Cibis, M., Potters, W.V., Gijsen, F.J.H., Marquering, H., van Bavel, E., van der, Steen A.F.W., Nederveen, A.J., Wnetzel, J.J. Wall shear stress calculations based on 3D cine phase contrast MRI and computational fluid dynamics: a comparison study in healthy carotid arteries. NMR Biomed. 2014; 27(7):826–34. doi:10.1002/nbm.3126.

[52] van, Ooij P., Powell, A.L., Potters, W.V., Carr, J.C., Markl, M., Barker, A.J. Reproducibility and interobserver variability of systolic blood flow velocity and 3D wall shear stress derived from 4D flow MRI in the healthy aorta. J. Magn. Reson. Imaging. 2016; 43(1):236–248. doi:10.1002/jmri.24959.

[53] van Ooij, P., Potters, W.V., Nederveen, A.J., Allen, B.D., Collins, J., Carr, J., Malasrie, S.C., Markl, M., Barker, A.J. A methodology to detect abnormal relative wall shear stress on the full surface of the thoracic aorta using four-dimensional flow MRI. Magn. Reson. Med. 2015; 73(3):1216–1227. doi:10.1002/mrm.25224.

[54] van Ooij, P., Potters, W.V., Collins, J., Carr, M., Carr, J., Malaisrie, S.C., Fedak, P.W.M., McCarthy, P.M., Markl, M., Barker, A.J. Characterization of abnormal wall shear stress using 4D flow MRI in human bicuspid aortopathy. Ann. Biomed. Eng. 2015; 43(6):1385–1397. doi:10.1007/s10439-014-1092-7.

[55] Isoda, H., Ohkura, Y., Kosugi, T., Hirano, M., Alley, M.T., Bammer, R., Pelc, N.J., Namba, H., Sakahara, H. Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics. Neuroradiology. 2010; 52(10):913–920. doi:10.1007/s00234-009-0634-4.

[56] Piatti, F., Pirola, S., Bissell, M., Nesteruk, I., Sturla, F., Della Corte, A., Redaelli, A., Votta, E. Towards the improved quantification of in vivo abnormal wall shear stresses in BAV-affected patients from 4D-flow imaging: Benchmarking and application to real data. J. Biomech. 2017; (50):93–101. doi:10.1016/j.jbiomech.2016.11.044.

[57] Shih, F.Y. Image processing and pattern recognition: fundamentals and techniques.NY: IEEE Press; 2010: 537.

[58] Hast, A. Simple filter design for first and second order derivatives by a double filtering approach. Pattern Recognit. Lett. 2014; (42):65–71. doi:10.1016/j.patrec.2014.01.014.

[59] Masutani, E.M., Contijoch, F., Kyubwa, E., Cheng, J., Alley, M.T., Vasanawala, S., Hsiao, A. Volumetric segmentation-free method for rapid visualization of vascular wall shear stress using 4D flow MRI. Magn. Reson. Med. 2018; 80(2):748–755. doi:10.1002/mrm.27159.

[60] Zimmermann, J., Demedts, D., Mirzaee, H., Ewert, P., Stern, H., Meierhofer, C., Menze, B., Hennemuth, A. Wall shear stress estimation in the aorta: Impact of wall motion, spatiotemporal resolution, and phase noise. J. Magn. Reson. Imaging. 2018; 48(3):718–728. doi:10.1002/jmri.26007.

[61] Petersson, S., Dyverfeldt, P., Ebbers, T. Assessment of the accuracy of MRI wall shear stress estimation using numerical simulations. J. Magn. Reson. Imaging. 2012; 36(1):128–138. doi:10.1002/jmri.23610.

[62] van der Palen, R.L.F., Roest, A.A.W., van den Boogaard, P.J., de Roos, A., Blom, N.A., Westenberg, J.J.M. Scan-rescan reproducibility of segmental aortic wall shear stress as assessed by phase-specific segmentation with 4D flow MRI in healthy volunteers. MAGMA. 2018; 31(5):653–663. doi:10.1007/s10334-018-0688-6.

[63] Callaghan, F.M., Grieve, S.M. Spatial resolution and velocity field improvement of 4D-flow MRI. Magn. Reson. Med. 2017; 78(5):1959–1968. doi:10.1002/mrm.26557.

[64] Callaghan, F.M., Kozor, R., Sherrah, A.G., Vallely, M., Celermajer, D., Figtree, G.A., Grieve, S.M. Use of multi-velocity encoding 4D flow MRI to improve quantification of flow patterns in the aorta. J. Magn. Reson. Imaging. 2016; 43(2):352–363. doi:10.1002/jmri.24991.

[65] Durst, F., Melling, A., Whitelaw, J.H. Principles and practice of laser doppler anemometry. Academic Press; 1976: 412.

[66] Albrecht, H.-E., Damaschke, N., Borys, M., Tropea, C. Laser doppler and phase doppler measurement techniques. Berlin; Heidelberg: Springer-Verlag; 2003: 738 .

[67] Bailey, S.C.C., Vallikivi, M., Hultmark, M., Smits, A.J. Estimating the value of von Karman’s constant in turbulent pipe flow. J. Fluid Mech. 2014; (749):79–98. doi:10.1017/jfm.2014.208.

[68] Segalini, A, Orlu, R., Alfredsson, P.H. Uncertainty analysis of the von Karman constant. Exp. Fluids 2013; 54(2):1460–1469. doi:10.1007/s00348-013-1460-3.

[69] Klewicki, J.C., Saric, W.S., Marusic, I., Eaton, J.K. Wall-bounded flow // Tropea, C., Yarin, A., Foss, J.F. (Editors) Springer Handbook of Experimental Fluid Mechanics. 1st Edition. Springer-Verlag Berlin Heidelberg; 2007: 871–908.

[70] Trinh, K.T. On the Karman constant. 2010. arXiv:1007.0605. Available at: https//arxiv.org/abs/1007. 0605

[71] Zanoun, E.-S., Durst, F., Nagib, H. Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Phys. Fluids. 2003; 15(10):3079–3089. doi:10.1063/1.1608010.

[72] El Khoury, G.K., Schlatter, P., Noorani, A., Fischer, P.F., Brethouwer, G., Johansson, A.V. Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers. Flow Turbul. Combust. 2013; 91(3):475–495. doi:10.1007/s10494-013-9482-8.

[73] Bauer, A., Wegt, S., Bopp, M., Jakirlic, S., Tropea, C., Krafft, A.J., Shokina, N., Hennig, J., Teschner, G. Egger, H. Comparison of wall shear stress estimates obtained by laser Doppler velocimetry, magnetic resonance imaging and numerical simulations. Exp. Fluids. 2019; (60):112-128. DOI: 10.1007/s00348-019-2758-6.

[74] Schenck, J.F. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med. Phys. 1996; 23(6):815–850. doi:10.1118/1.597854.

[75] Egger, H, Teschner, G. On the stable estimation of flow geometry and wall shear stress from magnetic resonance images. Inverse Probl. 2018. doi:10.1088/1361-6420/ab23d5.

[76] Moody, L.F. Friction factors for pipe flows. Trans. Am. Soc. Mech. Eng. 1944; (66):671–678.


Bibliography link:
Shokina N.Y., Teschner G., Bauer A., Tropea C., Egger H., Hennig J., Krafft A.J. Quantification of wall shear stress in large blood vessels using magnetic resonance imaging // Computational technologies. 2019. V. 24. ¹ 4. P. 4-27
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT