Article information

2019 , Volume 24, ¹ 2, p.90-98

Makarenko N.I., Liapidevskii V.Y., Denisenko D.S., Kukushkin D.E.

Nonlinear internal wave packets in shelf zone

The problem on nonlinear internal waves propagating permanently in shallow fluid is studied semi-analytically in comparison with the field data measured on the sea shelf. At present, the most studied in this context are nonlinear solitary-type waves generated due to the tidal activity over continental slope. This paper deals with periodic cnoidaltype wave packets considered in the framework of mathematical model of continuously stratified fluid. Basic model involves the Dubreil-Jacotin-Long equation for a stream function that results from stationary fully non-linear 2D Euler equations. The longwave approximate equation describing periodic non-harmonic waves is derived by means of scaling procedure using small Boussinesq parameter. This parameter characterizes slight stratification of the fluid layer with the density profile being close to the linear stratification. The fine-scale density plays important role here because it determines the non-linearity rate of model equation, so it permits to consider strongly non-linear dispersive waves of large amplitude. As a result, constructed asymptotic solutions can simulate periodic wave-trains of sub-surface depression coupled with near-bottom wavetrains of isopycnal elevation. It is demonstrated that calculated wave profiles are in good qualitative agreement with internal wave structures observed by the authors in the field experiments performed annually during 2011-2018 in expeditions on the shelf of the Japanese sea.

[full text] [link to elibrary.ru]

Keywords: weak stratification, periodic and solitary waves, asymptotic modelling, field experiment

doi: 10.25743/ICT.2019.24.2.008

Author(s):
Makarenko Nikolay Ivanovich
Dr. , Associate Professor
Position: General Scientist
Office: Lavrentyev Institute of Hydrodynamics SB RAS
Address: 630090, Russia, Novosibirsk, 15, Lavrentiev av.
Phone Office: (383)3306860
E-mail: makarenko@hydro.nsc.ru
SPIN-code: 9819-5175

Liapidevskii Valery Yurievich
Dr. , Associate Professor
Position: General Scientist
Office: Lavrentyev Institute of Hydrodynamics SB RAS
Address: 630090, Russia, Novosibirsk, 15, Lavrentiev av.
Phone Office: (3833) 33 24 59
E-mail: liapid@hydro.nsc.ru
SPIN-code: 7927-6719

Denisenko Danila Sergeevich
Position: Master student
Office: Novosibirsk State University
Address: 630090, Russia, Novosibirsk, 15, Lavrentiev av.
Phone Office: (383)3333199
E-mail: danilko123@yandex.ru

Kukushkin Dmitriy Evgenievich
Position: Student
Office: Novosibirsk State University
Address: 630090, Russia, Novosibirsk, 15, Lavrentiev av.
Phone Office: (383)3333199
E-mail: bird0000@yandex.ru

References:
[1] Serebryany, A.N. Manifestation of soliton properties on internal waves on a shelf. Izvestiya, Atmospheric and Oceanic Physics. 1993; 29(2):229 - 238.

[2] Duda, T. F., Lynch, J. F., Irish, J. D., Beardsley, R. C., Ramp, S. R., Chiu, C.-S., Tang, T. Y. & Yang, Y.-J. Internal tide and nonlinear internal wavebehavior at the continental slope in the northern South China Sea. IEEE Journal of Oceanic Engineering. 2004; 29(4):1105 - 1131.

[3] Sabinin, K.D., Serebryany, A.N. "Hot spots" in the field of internal waves in the ocean. Acoustical Physics. 2007; 53(3):357 - 380.

[4] Grimshaw, R., Pelinovsky, E., Poloukhina, O. Higher-order Korteweg de Vries models for internal solitary waves in a stratified shear ow with a free surface. Nonlinear Processes in Geophysics. 2002; (9):221 - 235.

[5] Helfrich, K.R., Melville, W.K. Long nonlinear internal waves. Annual Review of Fluid Mechanics. 2006; (38):395 - 425.

[6] Talipova, T.G., Pelinovsky, E.N., Kurkin, A.A., Kurkina, O.E. Modeling the dynamics of intense internal waves over a shelf. Izvestiya, Atmospheric and Oceanic Physics. 2014; 50(6):630 - 637.

[7] Gavrilov, N.V., Liapidevskii, V.Yu., Gavrilova, K.N. Large amplitude internal solitary waves over a shelf. Natural Hazards and Earth System Sciences. 2011; 11(1):17 - 25.

[8] Gavrilov, N.V., Liapidevskii, V.Yu., Liapidevskaya, Z.A. Influence of dispersion on the propagation of internal waves in a shelf zone. Fundamentalnaya i prikladnaya gidrofizika. 2013; 6(2):25 - 34. (In Russ.)


[9] Gavrilov, N.V., Liapidevskii, V.Yu., Liapidevskaya, Z.A. Transformation of large amplitude internal waves over a shelf. Fundamentalnaya i prikladnaya gidrofizika. 2015; 8(3):32 - 43. (In Russ.)

[10] Benney, D.J., Ko, D.R.S. The propagation of long large amplitude internal waves. Studies in Applied Mathematics. 1978; 59(3):187 - 199.

[11] Borisov, A.A., Derzho, O.G. The structure of steady state solitary waves of finite amplitude. Izvestiya SO AN SSSR. Tekhnicheskie Nauki. 1990; (2):60 - 70. (In Russ.)

[12] Derzho, O.G. Acoustic and gravitational waves of large amplitude in nonhomogeneous media. PhD thesis. Novosibirsk: IT SB RAS, 1993. (In Russ.)

[13] Derzho, O.G., Grimshaw, R. Solitary waves with a vortex core in a shallow layer of stratified fluid. Physics of Fluids. 1997; 9(11):3378 - 3385.

[14] Makarenko, N.I. Conjugate ows and smooth bores in a weakly stratified fluid. Journal of Applied Mechanics and Technical Physics. 1999; 40(2):249 - 257.

[15] Makarenko, N.I., Maltseva, J.L. Influence of stratification weak structure on the parameters of nonlinear internal waves. Computational Technologies. 2001; 6(Pt. 2, Special issue):421 - 427. (In Russ.)

[16] Makarenko, N.I., Maltseva, J.L., Kazakov, A.Yu. Conjugate flows and amplitude bounds for internal solitary waves. Nonlinear Processes in Geophysics. 2009; (16):169 - 175.

[17] Yih, C.S. Stratified flows. N.-Y.: Acad. Press; 1980:436.

[18] Fedorov, K.N. The thermohaline nestructure of the ocean. Oxford: Pergamon Press; 1978: 180.

[19] Dunphy, M., Subich, C., Stastna, M. Spectral methods for internal waves: indistinguishable density pro les and double-humped solitary waves. Nonlinear Processes in Geophysics. 2011; (18):351 - 358.

[20] Kukarin, V.F., Liapidevskii, V.Yu., Navrotsky, V.V., Khrapchenkov, F.F. Evolution of large amplitude internal waves in a swash zone. Fundamentalnaya i prikladnaya gidrofizika. 2013; 6(2):35 - 45. (In Russ.)

[21] Khe, A.K., Chebotnikov, A.V., Liapidevskii, V. Yu., Kukarin, V.F. Bottom measurement station based on a single-board computer. Eastern European Scientific Journal. 2014; (6):303 - 308.

[22] Liapidevskii, V.Yu., Novotryasov, V.V., Khrapchenkov, F.F., Yaroshchuk, I.O. Internal wave bore in the shelf zone of the sea. Journal of Applied Mechanics and Technical Physics. 2017; 58(5):809 - 818.

Bibliography link:
Makarenko N.I., Liapidevskii V.Y., Denisenko D.S., Kukushkin D.E. Nonlinear internal wave packets in shelf zone // Computational technologies. 2019. V. 24. ¹ 2. P. 90-98
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT