Article information

2019 , Volume 24, ¹ 1, p.55-72

Gusyakov V.K., Kikhtenko V.A., Chubarov L.B., Shokin Y.I.

Regional tsunami hazard maps for the Far East coast of the Russian Federation built in the framework of the PTHA methodology

The article describes the results of the implementation of the PTHA (Probabilistic Tsunami Hazard Assessment) methodology for creating the overview maps of tsunami hazard for the Far East coast of the Russian Federation. Such maps show the characteristics of the catastrophic impact of tsunami waves on the coast and the probability of their exceeding in a given period of time. The methodological basis of the PTHA approach to the assessment of tsunami hazard, the problems of constructing seismotectonic models of the main tsunamigenic zones, mathematical models and algorithms for calculating probability estimates of tsunami danger are discussed. The version of the PTHA methodology outlined in the article is implemented as a “WTmap” Web-application that has an access to the entire observational information related to coastal tsunami zoning and software packages used. The application allows to obtain the estimates of the expected tsunami heights and their recurrence estimates and to map them on specific parts of the Far Eastern coast of the Russian Federation. The obtained estimates can be quickly recalculated when replacing the observational catalogs with more complete and reliable ones, with the addition of new, previously absent events or the revision of their parameters, as well as the results of new scenario calculations. Examples of overview maps for various recurrence intervals, constructed using the PTHA methodology and presented using the “WTMap” application, are given. Some problems of using the PTHA methodology related to the lack of available observational data and to the complexity of performing a large amount of scenario simulations are also discussed.

[full text] [link to elibrary.ru]

Keywords: tsunami hazard, tsunami zoning, tsunamigenic zones, seismotectonic models, recurrence, probabilistic assessments, PTHA, Monte Carlo method, scenario modeling

doi: 10.25743/ICT.2019.24.1.005

Author(s):
Gusyakov Vyacheslav Konstantinovich
Dr.
Position: Senior Research Scientist
Office: Institute of Computational Mathematics and Mathematical Geophysics Siberian Division Russian Academy of Sciences
Address: 630090, Russia, Novosibirsk, Ave.Lavrentiev, 6
Phone Office: (383) 3307070
E-mail: gvk@sscc.ru
SPIN-code: 5806-1641

Kikhtenko Vladimir Andreevich
Position: Junior Research Scientist
Office: Institute of Computational Technologies SB RAS
Address: 630090, Russia, Novosibirsk, 6, Acad. Lavrentjev avenue
Phone Office: (383) 334 9108
E-mail: kikht@ict.nsc.ru
SPIN-code: 7859-8172

Chubarov Leonid Borisovich
Dr. , Professor
Position: General Scientist
Office: Institute of Computational Technologies SB RAS
Address: 630090, Russia, Novosibirsk, ac. Lavrentyev Ave., 6
Phone Office: (383) 333 18 82
E-mail: chubarov@ict.nsc.ru
SPIN-code: 3048-2318

Shokin Yuriy Ivanovich
Dr. , Academician RAS, Professor
Position: Scientific Director of the Institute
Office: Federal Research Center for Information and Computational Technologies
Address: 630090, Russia, Novosibirsk, Ac. Lavrentiev ave., 6
Phone Office: (383) 334 91 10
E-mail: shokin@ict.nsc.ru
SPIN-code: 6442-4180

References:
[1] Ulomov, V.I., Bogdanov, M.I. General seismic zoning of the territory of the Russian Federation. Explanatory note to the set of maps of OSR-2016 and the list of settlements located in seismically active zones. Engineering survey. 2016; (7):49–121. (In Russ.)

[2] Power, W., Downes, G. Tsunami hazard assessment. Volcanic and tectonic hazard assessment for nuclear facilities. Edited by Connor, C., Chapman, N., Connor, L. Cambridge Univ. Press; 2009: 276–306.

[3] Knighton, J., Bastidas, L. A proposed probabilistic seismic tsunami hazard analysis methodology. Natural Hazards. 2015; (78):699–723.

[4] Grezio, A., Babeyko, A., Baptista, M. A.,Behrens, J., Costa, A., Davies, G.,...Thio, H. K. ProbabilisticTsunami Hazard Analysis: Multiplesources and global applications. Reviews of Geophysics. 2017; (55):1158–1198. Available at: https://doi.org/10.1002/2017RG000579

[5] Gusiakov, V.K. Tsunamis on the Russian Pacific Coast: History and Current Situation. Russian Geology and Geophysics. 2016; (57):1259–1268.

[6] Gusiakov V.K., Kikhtenko V.A., Chubarov L.B. To the comparative significance of the parameters of tsunamigenic earthquake sources [Electronic resource] // The 6th Scientific Biennial Conference “Problems of Complex Geophysical Monitoring of the Russian Far East”, October 1–7, 2017 Petropavlovsk-Kamchatsky, Russia http://emsd.ru/conf2017lib/pdf/tsunami/kihtenko.pdf (In Russ.)

[7] Shokin, Yu. I., Babailov, V. V., Beisel, S. A., Chubarov, L. B., Eletsky, S. V., Fedotova, Z. I., Gusiakov, V. K. Mathematical modeling in application to regional tsunami warning systems operations. Computational Science and High Performance Computing III. Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series. 2008; (101):52-68. Available at: https://doi.org/10.1007/978-3-540-69010-8_6.

[8] MacCormack, R. W. The effect of viscosity in hypervelocity impact cratering. 4th Aerodynamic Testing Conference. Available at: https://arc.aiaa.org/doi/10.2514/6.1969-354

[9] Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America 1985; 75(4):1135–1154.

[10] Gusiakov, V.K. Ostatochnye smeshcheniya na poverkhnosti uprugogo poluprostranstva [Static displacement of the surface of an elastic halfspace]. Uslovno-korrektnye zadachi matematicheskoy fiziki v interpretatsii geofizicheskikh nablyudeniy. Novosibirsk: VTs SO RAN; 1978: 23-51 (In Russ.)

[11] Wells, D. L., Coppersmith, K. J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America August. 1994; (84):974–1002.

[12] Aki, Ê. Earthquake mechanism. Tectonophysics. 1972; 13(I–4):423–446.

[13] Lobkovskiy, L.I., Sorokhtin, O.G. Lithospheric plate tectonics and generation of tsunamigenic earthquakes. Doklady Akademii Nauk SSSR. 1980; 251 (5):1092–1095. (In Russ.)

[14] Lobkovskiy L., Baranov B. K voprosu o vozbuzhdenii tsunami v zonakh poddviga litosfernykh plit [On the tsunami generation problem in the subduction zones of lithospheric plates]. Processy vozbuzhdeniya i rasprostraneniya tsunami. Moscow: IO AN SSSR; 1982:7-17. (In Russ.)

[15] Lobkovskiy, L.I., Sorokhtin, O.G., Deformatsiya litosfernykh plit v zonakh poddviga [Deformation of lithospheric plates in subduction zones]. Okeanologiya. Geofizika okeana, T. 2, Geodinamika. Moscow: Nauka; 1979: 194-203. (In Russ.)

[16] Minoura, K., Nakata, T. Discovery of an ancient tsunami deposit in coastal sequences of southwest Japan: Verification of a large historic tsunami. The Island Arc. 1994; 3(1):66–72.

[17] HTDB/WLD (Historical Tsunami Database for the World Ocean), 2000 BC to Present,Tsunami Laboratory, ICMMG SB RAS, Novosibirsk, 2018. Available at: http://tsun.sscc.ru/nh/tsunami.php

[18] The ISC-GEM Global Instrumental Earthquake Catalogue (1904-2014), version 5.1 of June 15, 2018. Available at: http://www.isc.ac.uk/iscgem/

[19] Kondorskaya, N.V., Shebalin, N.V. New Catalog of Strong Earthquakes in the USSR from Ancient Times Through 1977. World Data Center A. Report SE-31. Boulder, USA; 1982: 608.

[20] Kim, Ch.U., Andreeva, M.Ju. Katalog zemletrjasenij Kurilo-Kamchatskogo regiona (1737-2005 gg.) [Catalogue of the Earthquakes in the Kuril-Kamchatka Region (1737–2005)]. Juzhno-Sahalinsk: IMGiG DVO RAN; 2009: 126. (In Russ.)

[21] Solov'ev, S. L., Ferchev, M. D. Data on tsunamis in the USSR. Byulleten' Soveta po seysmologii AN SSSR. 1961; (9):23–55. (In Russ.)

[22] Solov'ev S. L. Osnovnye dannye o tsunami na Tikhookeanskom poberezh'e SSSR, 1937–1976 gg. Izuchenie tsunami v otkrytom okeane [Basic data on tsunami in the USSR Pacific coast, 1937–1976.Tsunami in the Open Ocean]. Moscow: Nauka; 1978: 61-136. (In Russ.)

[23] Zayakin, Yu.A. Tsunami na Dal'nem Vostoke Rossii [Tsunami in the Far East of Russia]. Petropavlovsk-Kamchatskiy: Kamshat; 1996: 88. (In Russ.)

[24] Kikhtenko, V. A., Gusyakov, V. K., Chubarov, L. B. Integrirovannaya informatsionnaya sistema konstruirovaniya obzornykh kart tsunami rayonirovaniya poberezhiy s ispol'zovaniem istoricheskikh i raschetnykh dannykh [Integrated information system for designing overview maps of coastal tsunami zoning using historical and computed data]. Svidetel'stvo o gosudarstvennoy registratsii programmy dlya EVM ¹ 2017618398. 2017. (In Russ.)

[25] Castanos, H., Lomnitz, C. PSHA: Is it science? Engineering Geology. 2002; 66(3–4):315–317.

[26] Klugel, J. U. Problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants. Engineering Geology. 2005; 78(3–4):285–307.

[27] Klugel, J. U. Error inflation in probabilistic seismic hazard analysis.Engineering Geology. 2007; 90(3–4):186–192.

[28] Klugel, J. U. Seismic hazard analysis — Quo vadis? Earth-Science Reviews. 2008; 88(1–2):1–32.

[29] Mak, S., Clements, R. A., Schorlemmer, D. The statistical power of testing probabilistic seismic-hazard assessments. Seismological Research Letters. 2014; 85(4):781–783.

[30] Stein, S., Geller, R. J., Liu, M. Why earthquake hazard maps often fail and what to do about it. Tectonophysics. 2012; (562):1–25.

[31] Mulargia, F., Stark, P. B., Geller, R. J. Why is Probabilistic Seismic Hazard Analysis (PSHA) still used? Physics of the Earth and Planetary Interiors. 2017; (264):63–75.

[32] Kossobokov, V. G., Nekrasova, A. K. Global seismic hazard assessment program maps are erroneous. Seismic instruments. 2012; 48(2):162–170.

[33] Wyss, M., Nekrasova, A., Kossobokov, V. Errors in expected human losses due to incorrect seismic hazard estimates. Natural hazards. 2012; 62(3):927–935.

[34] Kossobokov, V. G., Keilis-Borok, V.I., Turcotte, D.L., Malamud, Â.D. Implications of a statistical physics approach for earthquake hazard assessment and forecasting. Microscopic and Macroscopic Simulation: Towards Predictive Modelling of the Earthquake Process. Birkhauser, Basel; 2000: 2323–2349.

[35] Pinegina, T. K., Razzhigaeva, N. G. Issledovaniya paleotsunami na dal'nevostochnom poberezh'e Rossii. Mirovoy okean. Tom I. Geologiya i tektonika okeana. Katastroficheskie yavleniya v okeane [Study of paleotsunami on the Far East coast of Russia,” in World Ocean. Volume 1. Geology and Tectonics of Ocean. Catastrophic Phenomena in Ocean]. Moscow: Nauchnyy mir; 2013: 488–498. (In Russ.)

[36] Razzhigaeva, N.G., Ganzey, L.A., Grebennikova, T.A., Kharlamov, A.A., Arslanov, Kh.A., Kaistrenko, V.M., Gorbunov, A.O., Petrov, A.Yu. The problem of paleoreconstructions of megatsunamis on the Southern Kurils. Russian Journal of Pacific Geology. 2017; 11(1):34–45.



Bibliography link:
Gusyakov V.K., Kikhtenko V.A., Chubarov L.B., Shokin Y.I. Regional tsunami hazard maps for the Far East coast of the Russian Federation built in the framework of the PTHA methodology // Computational technologies. 2019. V. 24. ¹ 1. P. 55-72
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT