Article information
2016 , Volume 21, ¹ 6, p.89-103
Rukavishnikov V.A., Nikolaev S.G.
Numerical analysis of the weighted finite element method for the elasticity problem with singularity
In this paper we consider the first boundary value problem for the Lam´e system in the two-dimensional nonconvex domain with boundary containing one reentrant corner. For this problem we define the solution as 𝑅𝜈 -generalized one in the weighted set. On the basis of this solution we constructed a scheme of the weighted finite element method with accuracy independent of the corner size and with 𝑂(ℎ) convergence rate for the approximate solution to the exact one. We carried out a comparative numerical analysis of the weighted finite element method, the classical FEM, and the FEM with meshes geometrically refined to the point of singularity. For this purpose we considered model problems for L-shaped domain. Singularity order of solutions of these problems was set as consistent with the magnitude 3𝜋/2 of the reentrant corner. Performed numerical analysis has demonstrated that - the approximate 𝑅𝜈 -generalized solution of the problem converges to the exact one at 𝑂(ℎ) rate in the weighted Sobolev norm, while the generalized solution (for the classical FEM) has 𝑂(ℎ 0.61 ) rate of convergence in the Sobolev norm; - in the overwhelming majority of grid nodes, the absolute error of the approximate 𝑅𝜈 -generalized solution is one or two orders of magnitude lower than for the generalized solution; - the FEM with graded meshes fails on high-dimensional grids, but the weighted FEM stably allows finding approximate solution with the high accuracy under the same computational conditions.
[full text] Keywords: boundary value problem with singularity, weighted finite element method, R-generalized solution
Author(s): Rukavishnikov Viktor Anatolyevich Dr. , Professor Position: Head of Laboratory Office: Computig Center FEB RAS Address: 680000, Russia, Khabarovsk, Kim U Chen st., 65
Phone Office: (4212)704342 E-mail: vark0102@mail.ru SPIN-code: 5421-6907Nikolaev Sergey Georgievich Position: Research Scientist Office: Computig Center FEB RAS Address: 680000, Russia, Khabarovsk, Kim U Chen st., 65
Phone Office: (4212)704342 E-mail: snik-post@ya.ru SPIN-code: 6250-1370 References: [1] Kondrat’ev, V.A. Boundary value problems for elliptic equations in domains with conical or angular points. Transactions of the Moscow Mathematical Society. 1967; (16):227–313. [2] Ciarlet, P.G. The finite element method for elliptic problems. Amsterdam: North-Holland Publishing Company; 1978: 546. ISBN 0 444 85038 4. [3] Samarskiy, A.A., Lazarov, R.D., Makarov, V.L. Raznostnye skhemy dlya differentsial'nykh uravneniy s obobshchennymi resheniyami [Finite-difference schemes for differential equations with generalized solutions]. Moscow: Vysshaya Shkola; 1987: 296. ( In Russ.) [4] Nguyen-Thoi, T., Vu-Do, H., Rabczuk, T., Nguyen-Xuan, H. A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. Computer Methods in Applied Mechanics and Engineering (COMPUT METHOD APPL M). 2010; (199):3005-3027. [5] Liu, G.R., Nguyen-Thoi, T. Smoothed finite elements methods. Boca Raton, USA: CRC Press; 2010: 688. [6] Nguyen-Xuan, H., Liu, G.R., Bordas, S., Natarajan, S., Rabczuk, T. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Computer Methods in Applied Mechanics and Engineering (COMPUT METHOD APPL M). 2013; (253):252-273. [7] Bramwell, J., Demkowicz, L., Gopalakrishnan, J., Qiu, W. A locking-free hp DPG method for linear elasticity with symmetric stresses. Numerische Mathematik. 2012; 122(4): 671-707. [8] Yan, A.M., Nguyen-Dang, H. Multiple-cracked fatigue crack growth by BEM. Computational Mechanics. 1995; (16):273-280. [9] Gospodinov, G., Drakaliev, P., Kerelezova, I. A singular boundary element method for the general corner case. Anniversary Scientific Conference 50 Years Faculty of Hydrotechics of the University of Architecture, Civil Engineering and Geodesy, 6-8 Oct. 1999, Sofia, Bulgaria. 1999:113-119. [10] Yosibash, Z., Schiff, B. A superelement for two-dimensional singular boundary value problems in linear elasticity. International Journal of Fracture. 1993; (62):325-340. [11] Szabo, B.A., Yosibash, Z. Numerical analysis of singularities in two dimensions. Part 2: Computation of generalized flux/stress intensity factors. International Journal for Numerical Methods in Engineering. 1996; (39):409-434. [12] Henshell, R.D., Shaw, K.G. Crack tip finite elements are unnecessary. International Journal for Numerical Methods in Engineering. 1975; (9):495-507. [13] Barsoum, R.S. Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. International Journal for Numerical Methods in Engineering. 1977; (11):85-98. [14] Sayantan, P., Rao, B.N. A modified quarter point element for fracture analysis of cracks. Indian Journal of Engineering & Material Sciences. 2007; (14):31-38. [15] Szabo, B., Babuska, I. Finite element analysis. New York: John Wiley & Sons; 1991: 368. [16] Apel, T., Sandig, A.-M., Whiteman, J.R. Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Mathematical Methods in the Applied Sciences. 1996; 19(1):63–85. [17] Morin, P., Nochetto, R.H., Siebert, K.G. Convergence of adaptive finite element methods. SIAM Review. 2002; 44(4):631-658. [18] Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z. The finite element method: its basis and fundamentals. Sixth edition. Elsevier; 2005: 733. [19] Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot M. Meshless methods: A review and computer implementation aspects. Mathematics and Computers in Simulation. 2008; (79):763-813. [20] Belytschko, T., Gracie, R., Ventura, G. A review of extended/generalized finite element methods for material modeling. Modelling and Simulation in Materials Science and Engineering. 2009; 17(4):043 001 (24pp). [21] Ivannikov, V., Tiago, C., Moitinho de Almeida, J.P., Dıez, P. Meshless methods in dual analysis: theoretical and implementation issues. V International Conference on Adaptive Modeling and Simulation (ADMOS 2011). Eds. by B. Tie, D. Aubry, P. Dıez. 2011: 291-308. Available at: http://www.lacan.upc.edu/sites/default/files/ADMOS_2011.pdf [22] Byfut, A., Schroder, A. hp-Adaptive extended finite element method. International Journal for Numerical Methods in Engineering. 2012; (89):1392-1418. [23] Bordas, S., Duflot, M., Le, P. A simple error estimator for extended finite elements.Communications in Numerical Methods in Engineering. 2008; 24(11):961-971. [24] Rukavishnikov, V.A. The weight estimation for the convergence rate of finite-difference schemes. Doklady Akademii Nauk SSSR. 1986; 288(5):1058–1062. [25] Rukavishnikov, V.A. The Dirichlet problem with the noncoordinated degeneration of the initial data. Doklady Akademii Nauk. 1994; 337(4):447–449. [26] Rukavishnikov, V.A., Rukavishnikova, H.I. The Finite Element Method For Boundary Value Problem With Strong Singularity. Journal of Computational and Applied Mathematics. 2010; 234(9):2870–2882. [27] Rukavishnikov, V.A., Mosolapov, A.O. New numerical method for solving time-harmonic Maxwell equations with strong singularity. Journal of Computational Physics. 2012; 231(2):2438–2448. [28] Rukavishnikov, V.A., Mosolapov, A.O. Weighted edge finite element method for Maxwell’s equations with strong singularity. Doklady Mathematics. 2013; 87(2):156–159. [29] Rukavishnikov, V.A., Rukavishnikova, H.I. On the error estimation of the finite element method for the boundary value problems with singularity in the Lebesgue weighted space. Numerical Functional Analysis and Optimization. 2013; 34(12):1328–1347. [30] Rukavishnikov, V.A., Nikolaev, S.G. Weighted finite element method for an elasticity problem with singularity. Doklady Mathematics. 2013; 88(3):705–709. [31] Rukavishnikov, V.A., Nikolaev, S.G On the R -Generalized Solution of the Lamé System with Corner Singularity. Doklady Mathematics. 2015; 92(1):421–423. [32] Rukavishnikov, V.A. On the convergence rate of the weighted FEM for two-dimensional elasticity problem with singularity. Lecture Notes in Computational Science and Engineering. 2016; (112):411-419. [33] Douglis, A., Nirenberg, L. Interior estimates for elliptic systems of partial differential equations. Communications on Pure and Applied Mathematics. 1955; (8):503–538. [34] Agmon, S., Douglis, A., Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Communications on Pure and Applied Mathematics. 1959; (12):623–727. [35] Agmon, S., Douglis, A., Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II. Communications on Pure and Applied Mathematics. 1964; (17):35–92. [36] Hormander, L. Linear partial differential operators. Eds. B. Eckmann, B.L. van der Waerden Grundl. d. Math. Wiss., V. 116. Berlin: Springer-Verlag; 1963: 279. [37] Lopatinskiy, Ya.B. Ob odnom sposobe privedeniya granichnykh zadach dlya sistemy differentsial'nykh uravneniy ellipticheskogo tipa k regulyarnym integral'nym uravneniyam [A method of reducing boundary problems for systems of differential equations of the elliptic type to regular integral equations]. Ukrains’kyi Matematychnyi Zhurnal (Ukrainian Mathematical Journal). 1953; (5):123–151. (In Russ.) [38] Ladyzhenskaya, O.A. The Boundary Value Problems of Mathematical Physics. Applied Mathematical Sciences. New York: Springer-Verlag; 1985; (49): 322. DOI: 10.1007/978-1-4757-4317-3. [39] Maz’ya, V.G., Plamenevskii, B.A. Lp-estimates of solutions of elliptic boundary value problems in domains with ribs. TRANSACTIONS OF THE MOSCOW MATHEMATICAL SOCIETY. 1980; (1):49–97. [40] Grisvard, P. Elliptic boundary problems in nonsmooth domains. Monographs and Studies in Mathematics, 24. Boston, MA:Pitman (Advanced Publishing Program); 1985: 410. ISBN: 0-273-08647-2 [41] Dauge, M. Elliptic Boundary Value Problems on Corner Domains. Smoothness and Asymptotics of Solutions. Lecture Notes in Mathematics. Springer Berlin Heidelberg; 1988; (1341): 267. [42] Samarskiy, A.A., Andreev, V.B. Raznostnye metody dlya ellipticheskikh uravneniy [Finite difference methods for elliptic equations]. Moscow: Nauka; 1976: 352. (In Russ.). [43] Assous, F., Ciarlet, P., Segre, J. Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domain: The Singular Complement Method. Journal of Computational Physics (J COMPUT PHYS). 2000; (161):218–249. [44] Costabel, M., Dauge, M. Weighted regularization of Maxwell equations in polyhedral domains. Numerische Mathematik. 2002; (93):239–277. [45] Rossle, A. Corner singularities and regularity of weak solutions for the two-dimensional Lame equations on domains with angular corners. Journal of Elasticity. 2000; 60(1):57–75. [46] Nikolaev, S.G., Rukavishnikov, V.A. Proba IV - programma dlya chislennogo resheniya dvumernykh zadach teorii uprugosti s singulyarnost'yu. Sv. 2013616248 Rossiyskaya Federatsiya [Program for the numerical solution of the two-dimensional elasticity problems with singularity]. Programmy dlya EVM. Bazy dannykh. Topologii integral'nykh mikroskhem: Ofitsial'nyy byulleten' Federal'noy sluzhby po intellektual'noy sobstvennosti. 2013; 3 (84). (In Russ.) [47] Rukavishnikov, V.A., Maslov, O.V., Mosolapov, A.O., Nikolaev, S.G. Automated software complex for determination of the optimal parameters set for the weighted finite element method on computer clusters. Computational nanotechnology. 2015; (1):9–19. (In Russ.) [48] Oganesyan, L.A., Rukhovets, L.A. Variatsionno-raznostnye metody resheniya ellipticheskikh uravneniy [Variational-difference methods for solving elliptic Equations]. Erevan: Izdatel'stvo AN Armyanskoy SSR; 1979: 235. (In Russ.) [49] Raugel, G. Resolution numerique par une methode d’elements finis du probleme de Dirichlet pour le laplacien dans un polygone. Comptes Rendus de l'Académie des Sciences. Series A - Mathematics. 1978; (286):791–794.
Bibliography link: Rukavishnikov V.A., Nikolaev S.G. Numerical analysis of the weighted finite element method for the elasticity problem with singularity // Computational technologies. 2016. V. 21. ¹ 6. P. 89-103
|