Article information

2016 , Volume 21, ¹ 4, p.111-120

Yushko O.V.

Iterative method for numerical modelling of spatio-temporal optical bullets

Multicore fiber is one of the main research trends in the field of nonlinear optics and photonics. Its broad application lies from optical switching devices to space division multiplexing as means of the high capacity fiber links that ensure the great potential and interest in such nonlinear fiber arrays. One of the challenges in the area is numerical construction of the stationary pulse solution in the irregular fiber structures. We consider multicore fiber consisting of radial equally distributed cores with the additional core in the center, which enters the irregularity. For such a system all the well-known numerical iterative methods tend to provide the trivial solution. To the best of our knowledge, we present the original iteration algorithm to construct the stationary solution in the multicore fiber of the irregular structure which is localized in time and space domains. Moreover, we prove the stability of the numerical solution using Vakhitov - Kolokolov criteria. The developed algorithm can be used for construction of the stationary solutions in multicore fibers of irregular structures.

[full text]
Keywords: Numerical modeling, multicore fibers, spatiotemporal optical bullet

Author(s):
Yushko Olesya Viktorovna
Position: Junior Research Scientist
Office: Institute of Computational Technologies SB RAS, Novosibirsk State University
Address: 630090, Russia, Novosibirsk
E-mail: olesya.yushko@gmail.com
SPIN-code: 3340-6839

References:
[1] Rubenchik, A.M., Chekhovskoy, I.S., Fedoruk, M.P., Shtyrina, O.V., Turitsyn, S.K. Nonlinear pulse combining and pulse compression in multi-core fibers. Optics Letters. 2015; 40(5):721–724.

[2] Richardson, D.J. Filling the light pipe. Science. 2010; (330):327–328.

[3] Richardson, D.J., Fini, J.M., Nelson, L.E. Space-division multiplexing in optical fibers. Nature Photonics. 2013; (7):354–362.

[4] Morita, I., Igarashi, K., Takahashi, H., Tsuritani, T., Suzuki, M. Trans-oceanic class ultra-long-haul transmission using multi-core fiber. Optics Express. 2014; 22(26):31761–31773.

[5] Tran, T.X., Duong, D.C., Biancalana, F. Light bullets in nonlinear waveguide arrays under the influence of dispersion and the Raman effect. Physical Review A. 2014; 90(2):023857–023865.

[6] Bryak, A.V., Akhmedov, N.N. Stationary pulse propagation in N-core nonlinear arrays. Journal of Quantum Electronics. 1995; 31(4):682–688.

[7] Aceves, A.B., Angelis, C.D., Rubenchik, A.M., Turitsyn, S.K. Multidimentional soliton in fiber arrays. Optics Letters. 1994; 19(5):329–331.

[8] Hadzievski, L., Maluckov, A., Rubenchik, A.M., Turitsyn, S. Stable optical vortices in nonlinear multicore fibers. Light: Science and Applications. 2015; (4):E314. Available at: http://www.nature.com/lsa/journal/v4/n8/full/lsa201587a.html

[9] Lakoba, T.I., Yang, J. A generalized Petviashvilli iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity. Journal of Computational Physics. 2007; (226):1668–1692.

[10] Petviashvili, V.I. Equation for an extraordinary soliton. Soviet Journal of Plasma Physics. 1976; (2):257–258.

[11] Aceves, A.B., Shtyrina, O.V., Rubenchik, A.M., Fedoruk, M.P., Turitsyn, S.K. Spatiotemporal optical bullets in two-dimensional fiber arrays and their stability. Physical Review A. 2015; (91):033810–033816.

[12] Zakharov, V.E., Kuznetsov, E.A. Soliton and collapses: two evolution scenarios of nonlinear wave systems. Reviews of Topical Problems. 2012; 55(6):535–556.

[13] Zakharov, V.E., Kuznetsov, E.A. Optical solitons and quasisolitons. JETP. 1998; 86(5):1035–1046.

[14] Vakhitov, V.N., Kolokolov, A.A. Stationary solutions of the wave equation for the media with saturable nonlinearity. Radiofizika. 1973; 17(7):1020–1028. (In Russ.)

[15] Panagiotopoulos, P., Whalen, P., Kolesik, M., Moloney, J.V. Super high-power midinfrared femtosecond light bullet. Nature Photonics. 2015; (9):543–548.

Bibliography link:
Yushko O.V. Iterative method for numerical modelling of spatio-temporal optical bullets // Computational technologies. 2016. V. 21. ¹ 4. P. 111-120
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT