Article information

2016 , Volume 21, ¹ 1, p.25-39

Borzov S.M., Melnikov P.V., Pestunov I.A., Potaturkin O.I., Fedotov A.M.

Integrated processing of hyperspectral images on the basis of spectral and spatial information

In this ðàðår wå àddråss thå måthîds îf thå hóðårsðåñtràl imàgå ñlàssifiñàtiîn. À nåw imàgå ñlàssifiñàtiîn sñhåmå is ðrîðîsåd. It èsås bîth sðåñtràl ànd sðàtiàl infîrmàtiîn åõtràñtåd frîm àn imàgå. It àlsî àllîws tî ñlàssifó hóðårsðåñtràl imàgås with thå hålð îf tràditiînàl àlgîrithms èsåd fîr mèltisðåñtràl imàgås åvån fîr våró limitåd tràining dàtàsåts. Òhå sñhåmå ñînsists îf thråå stàgås: 1) rådèñtiîn îf fåàtèrå sðàñå dimånsiînàlitó; 2) sèðårwisåd ðiõålwiså ñlàssifiñàtiîn; 3) råfining îf ñlàssifiñàtiîn màð èsing sðàtiàl infîrmàtiîn. Såvåràl àlgîrithms àrå ñînsidåråd fîr åàñh stàgå. Ðrinñiðàl Ñîmðînånt Ànàlósis (ÐÑÀ), Âlîñê Ðrinñiðàl Ñîmðînånt Ànàlósis (ÂÐÑÀ) ànd Ìinimèm Nîiså Fràñtiîn (ÌNF) àrå èsåd fîr first stàgå whilå Ìàõimèm Liêålihîîd (ÌL) ànd Sèððîrt Våñtîr Ìàñhinå (SVÌ) àrå åmðlîóåd fîr thå såñînd stàgå. Ìàjîritó Filtår (ÌF), Ðrîbàbilitó-bàsåd Ìàjîritó Filtår (ÐÌF) ànd Ìinimèm Sðànning Fîråst (ÌSF) àrå tàêån fîr thå third stàgå.

Òhå sñhåmå wàs tåståd în twî råfårånñå hóðårsðåñtràl imàgås - Indiàn Ðinås (224 ñhànnåls) ànd Ðàvià Univårsitó (103 ñhànnåls) - with diffårånt nèmbår îf tràining sàmðlås (100, 200, 400 ànd 800 sàmðlås ðår ñlàss). Òhå råsèlts shîw thàt nèmbår îf fåàtèrås ñàn bå rådèñåd bó îrdår îf màgnitèdå withîèt dågràdàtiîn îf ñlàssifiñàtiîn qèàlitó. 20 ÌNF fåàtèrås àrå sèffiñiånt fîr Indiàn Ðinås imàgå ànd 15 ÂÐÑÀ fåàtèrås àrå sèffiñiånt fîr Ðàvià Univårsitó. If N/k < 15 (whårå N is à nèmbår îf tràining sàmðlås ðår ñlàss ànd k is à nèmbår îf fåàtèrås) thå àññèràñó îf ÌL ñlàssifiår dåñråàsås signifiñàntló. Uså îf sðàtiàl infîrmàtiîn ñàn inñråàså ñlàssifiñàtiîn àññèràñó bó 6-8 %.

[full text]
Keywords: hyperspectral image classification, extraction of informative features, principal component analysis, support vector machine, spectral and spatial characteristics

Author(s):
Borzov Sergey Mikhailovich
PhD.
Position: Head of Laboratory
Office: Institute of Automation and Electrometry SB RAS
Address: 630090, Russia, Novosibirsk, Academician Koptyug ave. 1
Phone Office: (383)330-90-33
E-mail: borzov@iae.nsk.su
SPIN-code: 7504-7810

Melnikov Pavel Vladimirovich
Position: Leader Expert
Office: Institute of Computational Technologies
Address: 630090, Russia, Novosibirsk, 6 Acad. Lavrentjev ave
Phone Office: (383) 334-91-55
E-mail: pvlvlml@gmail.com

Pestunov Igor Alekseevich
PhD. , Associate Professor
Position: Leading research officer
Office: Federal Research Center for Information and Computational Technologies
Address: 630090, Russia, Novosibirsk, Ac. Lavrentiev ave., 6
Phone Office: (383) 334-91-55
E-mail: pestunov@ict.nsc.ru
SPIN-code: 9159-3765

Potaturkin Oleg Iosifovich
Dr. , Professor
Position: Head of Research
Office: Institute of Automation and Electrometry SB RAS, Novosibirsk State University
Address: 630090, Russia, Novosibirsk, Pirogova str., 2
Phone Office: (383)330-40-20
E-mail: potaturkin@iae.nsk.su
SPIN-code: 8552-8963

Fedotov Anatolii Mikhailovich
Dr. , Correspondent member of RAS, Professor
Position: Deputy Director on science
Office: Institute of Computational Technologies SB RAS
Address: 630090, Russia, Novosibirsk, Ac. Lavrentiev ave., 6
Phone Office: (383) 330 73 51
E-mail: fedotov@ict.nsc.ru

References:
[1] Bondur, V.G. Modern approaches for processing of big hyperspectral aerospace data. Issledovanie Zemli iz Kosmosa. 2014; 1:4-16. (In Russ.)
[2] Raudis Sh.Yu. Review of the effect of a sample size on the classification of the quality. Statistical problems of control. 1984; (66):9–42. (In Russ.)
[3] Richards, J.A. Remote Sensing Digital Image Analysis. Berlin: Springer-Verlag; 1999: 240.
[4] Plaza, À., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J.C., Trianni, G. Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment. 2009; (113):S110–S122.
[5] Ablin, R., Sulochana, C.H. A Survey of Hyperspectral Image Classification in Remote Sensing. International Journal of Advanced Research in Computer and Communication Engineering. 2013; 2 (8):2986–3003.
[6] Kuo, B.C., Landgrebe, D.A. A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction. IEEE Transactions on Geoscience and Remote Sensing. 2002; 40 (11):2486–2494.
[7] Martinez-Uso, A., Pla, F., Sotoca, J.M., García-Sevilla, P. Clustering based band selection for hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing. 2007; 45 (12):4158–4171.
[8] Lavanya, A., Sanjeevi, S. An improved band selection technique for hyperspectral data using factor analysis. Journal of the Indian Society of Remote Sensing. 2013; 41 (2):199–211.
[9] Ratle, F., Weston, J. Semisupervised Neural Networks for Efficient Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing. 2010; 48 (5): 2271–2282.
[10] Fodor, I. A Survey Of Dimension Reduction Techniques. Technical Report UCRL-ID-148494. Oakland: University of California; 2002: 26.
[11] Bruce, L.M., Koger, C.H., Jiang, L. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Transactions on Geoscience and Remote Sensing. 2002; 40 (10):2331–2338.
[12] Smirnov, S.I., Mikhailov, V.V., Ostrikov V.N. Application of randomized principal component analysis for compression of hyperspectral data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa. 2014; 11 (2):9–17. (In Russ.)
[13] Imani, M., Ghassemian, H. Band Clustering-Based Feature Extraction for Classification of Hyperspectral Images Using Limited Training Samples. IEEE Geoscience and Remote Sensing Letters. 2014; 11 (8):1325–1329.
[14] Xiuping, J. Simplified maximum likelihood classification for hyperspectral data in cluster space. IEEE Geoscience and Remote Sensing Symposium. 2002; (5):2578–2580.
[15] Gualtieri, J.A., Cromp, R.F. Support Vector Machines for hyperspectral remote sensing classification. Proceedings 27th AIPR Workshop: Advances in Computer-Assisted Recognition. 1999:221–232.
[16] Meer, F. The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation. 2006; 8(1):3–17.
[17] Goel, P.K., Prasher, S.O., Patel, R.M., Landry, J.A., Bonnell, R.B., Viau, A.A. Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Computers and Electronics in Agriculture. 2003; (39):67–93.
[18] Kuznetsov, A.V., Myasnikov, V.V. A comparison of algorithms for supervised classification using hyperspectral data. Computer Optics. 2014; 38(3):494–502. (In Russ.)
[19] Shafri, H. The Performance of Maximum Likelihood, Spectral Angle Mapper, Neural Network and Decision Tree Classifiers in Hyperspectral Image Analysis. Journal of Computer Science. 2007; 3(6):419–423.
[20] Borzov, S.M., Potaturkin, O.I. Vegetable cover type classification using hyperspectral remote sensing. Novosibirsk State University Journal of Information Technologies. 2014; 12(4):13–22. (In Russ.)
[21] Dey, V., Zhang, Y., Zhong, M. A review on image segmentation techniques with remote sensing perspective. ISPRS TC VII Symposium — 100 Years ISPRS. Vienna, Austria, July 5–7 2010. IAPRS. 2010: XXXVIII(pt 7A):31–42.
[22] Zimichev, E.A., Kazanskiy, N.L., Serafimovich, P.G. Spectral-spatial classification with k-means++ particional clustering. Computer Optics. 2014; 38 (2):281–286.
[23] Fauvel, M. Spectral and spatial methods for the classification of urban remote sensing data. PhD. Thesis. Grenoble Institute of Technology; 2007: 188.
[24] Bernard, K., Tarabalka, K., Angulo, J., Chanussot, J., Benediktsson, J.A. Spectral–Spatial Classification of Hyperspectral Data Based on a Stochastic Minimum Spanning Forest Approach. IEEE Transactions on Image Processing. 2012; 21(4):2008–2021.
[25] Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine. 1901; 2(11):559–572.
[26] Pestunov, I.A., Melnikov, P.V. Block principal component analysis for extraction of informative features for classification of hyperspectral images. Journal of Siberian Federal University: Engineering & Technologies. 2015; 8(6):715–725. (In Russ.)
[27] Green, A.A., Berman, M., Switzer, P., Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing. 1988; 26(1):65–74.
[28] Vermillion, S.C., Sader, S.A. Use of the Minimum Noise Fraction (MNF) Transform to Analyze Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Data of Northern Forest Types. AVIRIS Workshop. JPL Publication. 1999. Available at: http://aviris.jpl.nasa.gov/proceedings/workshops/99_docs/62.pdf (accessed at 23.11.2015).
[29] Borzov, S.M., Potaturkin, A.O., Potaturkin, O.I., Fedotov, A.M. A research of classification efficiency for hyperspectral satellite images of nature and anthropogenic territory. Optoelectronics, Instrumentation and Data Processing. 2016; 1(52):1–6.
[30] Cristianini, N. An introduction to support vector machines and other kernel-based learning methods. Cambridge: Cambridge University Press; 2000: 189.
[31] Chang, C.-C., Lin, C.-J. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology. 2011; 2(27):1–27.
[32] Hader, D.P. Image Analysis: Methods and Applications. London: CRC Press; 2000: 480.
[33] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. Introduction to Algorithms (2nd ed.). Cambridge: The MIT Press; 2001: 1184.
[34] Hyperspectral Remote Sensing Scenes. Available at: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes (accessed at 22.06.2014).

Bibliography link:
Borzov S.M., Melnikov P.V., Pestunov I.A., Potaturkin O.I., Fedotov A.M. Integrated processing of hyperspectral images on the basis of spectral and spatial information // Computational technologies. 2016. V. 21. ¹ 1. P. 25-39
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT