Article information
2016 , Volume 21, ¹ 1, p.92-106
Kovalevskaya N.M., Kirillov V.V., Pavlov V.E., Khabidov A.S., Lovtskaya O.V., Fedorova E.A.
Use of satellite data for water quality parameters retrieval and bathymetry derivation for Novosibirsk Reservoir
Chlorophyll (Chl) concentrations, total suspended matter (TSM) concentrations, colored dissolved organic matter (CDOM) absorption and inherent optical properties (IOP) of Novosibirsk Reservoir were retrieved using neural network inversion based on MERIS-data in 2007-2011. Homogeneity regions were discovered in the first optical depth of reservoir. These regions match the peculiarities of morpholithogenesis and are specified by particular properties of Chl, TSM, CDOM and IOP. Spatial and temporal variability of Chlconcentration is a primary indicator of the reservoir water quality in calm weather. When exposed to wind Chl-concentration fields change vertically, mostly in the widest and deepest part of the reservoir. To restore the distribution of water quality parameters in the depth of the water column, we investigate the opportunities for retrieving bathymetric characteristics. For that we compare the brightness obtained by WorldView-2 spacecraft high spatial and spectral resolution data. Despite the complexity of bathymetric studies in a mesotrophic reservoir, we found the optimal set of channels of the WorldView-2 to preliminary estimate (root-mean-square error RMSE = 1.4 m) of deepwater regions. The development of combined technology ’retrieval of water quality parameters - bathymetry derivation’ provides an opportunity to use the data of satellite constellation Sentinel more efficiently. The Sentinel-3 OLCI (Ocean and Land Colour Instrument) is based on MERIS technology and will provide data continuity with it. Sentinel-2 provides data of high spatial and spectral resolution. Źīäū
[full text] Keywords: water quality parameters retrieval, neural network inversion, MERIS-ENVISAT, bathymetry, mesotrophic reservoir, WorldView-2
Author(s): Kovalevskaya NelleyM. PhD. , Associate Professor Position: Senior Research Scientist Office: Institute for water and environmental problems SB RAS Address: 665038, Russia, Barnaul, Molodezhnaya St.,1
Phone Office: (3852) 66 65 01 E-mail: knm@iwep.asu.ru Kirillov Vladimir Viktorovich PhD. , Associate Professor Position: Head of Laboratory Office: Institute for water and environmental problems SB RAS Address: 656038, Russia, Barnaul, 1, Molodezhnaya St.
Phone Office: (3852) 24 02 14 E-mail: vkirillov@iwep.ru Pavlov Vladimir Evgenyevich Dr. , Professor Position: General Scientist Office: Institute for Water and Environmental Problems, Siberian Branch of the Russian Academy of Sciences Address: 656038, Russia, Barnaul, 1,Molodyoznaya St
E-mail: pavlov@iwep.ru Khabidov Alexander Shamilevich Dr. , Professor Position: General Scientist Office: Institute for Water and Environmental Problems, Siberian Branch of the Russian Academy of Sciences Address: 656038, Russia, Barnaul, 1,Molodyoznaya St
Lovtskaya Olga Vol'fovna Position: Senior Research Scientist Office: Institute for water and environmental problems SB RAS Address: 656038, Russia, Barnaul, 1, Molodezhnaya St.
Phone Office: (3852) 66 65 01 E-mail: lov@iwep.asu.ru Fedorova Elena Alexandrovna Position: engineer Office: Southern Department of P.P.Shirshov Institute of Oceanology RAS Address: 353467, Russia, Gelendjik, 1g, Prostornaya St.
E-mail: elalfe555@gmail.com
References: [1] Bukata, R.P., Jerome, J.H., Kondratyev, K.Ya., Pozdnyakov, D.V. Optical Properties and Remote Sensing of Inland and Coastal Waters. Boca Raton, Florida: CRC Press, Inc.; 1995: 362. [2] Sathyendranath, S. Remote sensing of ocean colour in coastal, and other optically-complex, waters. IOCCG Report Number 3. Dartmouth, Canada: MacNab Print; 2000; (3):140. [3] Gordon, H.R., McCunley, W.R. Estimation of the Depth of Sunlight Penetration in the Sea for Remote Sensing. Applied Optics. 1975; 14(2):413–416. [4] Minghelli-Roman, A., Goreac, A., Mathieu, S., Spigai, M., Gouton, P. Comparison of Bathymetric Estimation Using Different Satellite Images in Coastal Sea Waters. International Journal of Remote Sensing. 2009; 30(1–2):5737–5750. [5] Kanno, A., Koibuchi, Y., Isobe, M. Statistical Combination of Spatial Interpolation and Multispectral Remote Sensing for Shallow Water Bathymetry. IEEE Geoscience and Remote Sensing Letters. 2011; 8(1):64–67. [6] Nedham, H., Dhabi, A., Hartman, K., Mimpriss, G. Peering Beneath the Surface. Available at: http://eijournal.com/print/articles/peering–beneath–the–surface#sthash.YS3wlKrJ.dpuf [accessed 20.10.2015]. [7] Stumpf, R.P., Holderied, K.Determination of Water Depth with High-Resolution Satellite Imagery Over Variable Bottom Types. Liminology and Oceanography. 2003; 48(1):547–556. [8] Deidda, M., Sanna, G. Bathymetric extraction using WorldView-2 high resolution images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B8. Proceedings of the XXII ISPRS Congress. Melbourne, Australia. 2012: 153-157. Doi:10.5194/isprsarchives-XXXIX-B8-153-2012. [9] Collin, A., Hench, J.L.Towards deeper measurements of tropical reefscape structure using the WorldView-2 spaceborne sensor. Remote Sensing. 2012; 4(12):1425-1447. [10] Uma Maheswari, R. Mapping the Under Water Habitat Related to their Bathymetry using Worldview-2 (wv-2) Coastal, Yellow, Rededge, Nir-2 Satellite Imagery in Gulf of Mannar to Conserve the Marine Resource. International Journal of Marine Science. 2013; 3(11): 91-97. Doi: 10.5376/ijms.2013.03.0011 [11] Jawak, S.D., Luis, A.J. Spectral Information Analysis for the Semiautomatic Derivation of Shallow Lake Bathymetry Using High-Resolution Multispectral Imagery: A Case Study of Antarctic Coastal Oasis. International Conference on Water Resources, Coastal and Ocean Engineering (ICWRCOE 2015). Aquatic Procedia. 2015; 4:1331-1338. http://dx.doi.org/10.1016/j.aqpro.2015.02.173 [12] Bramante, J., Raju, F., Kumaran Durairaju, Sin, Tsai Min. Multispectral derivation of bathymetry in Singapore’s shallow, turbid waters. International Journal of Remote Sensing. 2013; 34(6):2070-2088. [13] Kaimaris, D., Patias, P., Stylianidis, E. Evaluation of Methodologies for the Determination of Bathymetry Using Worldview-2 Imagery: a Case Study at Lake Pramoritsa, Greece. Applied Remote Sensing Journal; 2012; 2(2):57-64. [14] Yuzugullu, O., Aksoy, A. Generation of the bathymetry of a eutrophic shallow lake using WorldView-2 imagery. Journal of Hydroinformatics. 2014; 16(1):50-59. [15] Kovalevskaya, N.M., Kirillov, V.V., Kirillova, T.V., Lovtskaya, O.V. Comparative assesment of water quality in the Novosibirsk Reservoir based on limnological MERIS data-models and high-resolution WorldView-2. Current Problems in Remote Sensing of the Earth from Space. 2012; 9(1):176-186. (In Russ.) [16] Bukanova T.V. Trends evtrofirovaniya yugo-vostochnoi chasti Baltiiskogo morya po sputnikovym dannym. Dis. ... kand. geogr. nauk. Kaliningrad, P.P. Shirshov Institute of Oceanology, AB RAS; 2014: 142. (In Russ.) [17] Kovalevskaya, N.M., Kirillov, V.V. Analysis of spatial distribution and seasonal dynamics of phytoplankton using satellite data. Long-term dynamics of water and ecological regime of Novosibirsk Reservoir. Ed. Vasiliev, O.F. Novosibirsk: FUE «Publishing House SB RAS»; 2014: 125-131. (In Russ.) [18] Maritorena, S., Siegel, D. A., Peterson, A. Optimization of a semi-analytical ocean color model for global scale applications. Applied Optics. 2002; 41(15):2705-2714. [19] Gordon, H.R., Brown, O.B. Ewans, R.H., Brown, J.W., Smith, R.C., Baker, K.S., Clark D.K. A semianalytical radiance model of ocean color. Journal of Geophysical Research. 1988; (93):10909–10924. [20] Kronberg, P.Fernerkundung der Erde Grundlagen und Methoden des Remote Sensing in der Geologie Ferdinand. Stuttgart: Enke Verlag; 1985:394. [21] Schiller, H., Doerffer, R. Neural Network for Emulation of an Inverse Model – Operational Derivation of Case II Water Properties from MERIS data. International Journal of Remote Sensing. 1999; 20 (9):1735-1746. [22] Lee, Z., Carder, K.L., Arnone, R.A. Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Applied Optics. 2002; 41(27). 5755-5772. [23] Khabidov, A.Sh., Leont’yev, I.O., Marusin, K.V., Shlychkov, V.A., Savkin, V.M., Kuskovskiy, V.S. Shore Management of reservoirs. Novosibirsk: FUE «Publishing House SB RAS»; 2009: 239. (In Russ.) [24] Kallio, K., Koponen, S., Ruiz-Verdu, A., Heege, T., Sorensen, K., Pyhalahti, T., Doerffer, R. Project Title: Development of MERIS lake water algorithms. Document Title: Validation protocol (WP 2.4). Version: 1.0. Available at: http://www.brockmann–consult.de/beam-wiki/download/attachments/8355860/MERIS_Lakes_Validation_Protocol_V1.0.pdf (accessed 20.10.2015). [25] Fedorova, E.A., Marusin, K.V., Khabidov, A.Sh. Izmenenie morfometricheskikh kharakteristik Novosibirskogo vodokhranilishcha za 50-letniy period ekspluatatsii. Geomorfologicheskie protsessy i ikh prikladnye aspekty [Morphometric characteristics of Novosibirsk Reservoir and their variations during 50-year period. Geomorphological processes and their applied aspects]. Tr. VI Shchukinskikh chteniy. Moscow: MSU Faculty of Geography. 2010: 375-376. (In Russ.) [26] Ryabov, A., Rudolf, L., Blasius, B. Vertical distribution and composition of phytoplankton under the influence of an upper mixed layer. Journal of Theoretical Biology. 2010; 263(1): 120–133. [27] Abakumov, A.I., Izrailsky, Y.G. Model method of vertical chlorophyll concentration reconstruction from satellite data. Komp'yuternye issledovaniya i modelirovanie. 2013; 5(3):473–482. (In Russ.) [28] Lyzenga, D.R. Shallow-Water Bathymetry Using Combined LIDAR and Passive Multispectral Scanner Data. International Journal of Remote Sensing. 1985; 6(1):115–125. Bibliography link: Kovalevskaya N.M., Kirillov V.V., Pavlov V.E., Khabidov A.S., Lovtskaya O.V., Fedorova E.A. Use of satellite data for water quality parameters retrieval and bathymetry derivation for Novosibirsk Reservoir // Computational technologies. 2016. V. 21. ¹ 1. P. 92-106
|