Article information

2015 , Volume 20, ¹ 3, p.58-74

Rybakov K.A.

Construction of admissible controls in spectral form of mathematical description

One of the methods for solution of problems arising in the control theory is the spectral method based on the representation of functions by orthogonal series (spectral form of the mathematical description). Its main advantage is that we can do all computations only with series coefficients. Thus, a problem that can be described, for example, by differential or integral equations is reduced to the solution of algebraic equations. In the spectral form of the mathematical description the functions are represented by column matrices, linear operators are represented by square matrices, and linear functionals are represented by row matrices. They are called the spectral characteristics of functions, the spectral characteristics of operators, and the spectral characteristics of linear functionals, respectively. Constraints on admissible controls are introduced for problems on the most optimal control. It is advisable to construct an analogue for the set of admissible controls as a set of respective spectral characteristics. In this case the admissibility check of the controls is simpler. This paper proposes a general method for constructing the set of admissible controls when the mathematical description is represented in the spectral form. This method prevents a typical transition from the spectral characteristics to the functions defined by them. We consider geometric constraints for admissible controls. The proposed method can be used in direct methods for optimization of dynamic systems. Some examples for the set of admissible controls in spectral form of mathematical description are given for Legendre polynomials and trigonometric functions. An exact description for the set of admissible controls and an example of finding the optimal control for second order dynamical system are given for Walsh functions.

[full text]
Keywords: admissible controls, spectral characteristic, spectral method

Author(s):
Rybakov Konstantin Alexandrovich
PhD. , Associate Professor
Position: Associate Professor
Office: Moscow Aviation Institute
Address: 125993, Russia, Moscow, GSP-3, A-80, Volokolamskoe shosse, 4
Phone Office: (499) 158-48-11
E-mail: rkoffice@mail.ru
SPIN-code: 2215-1921

References:




[1]Moiseev, N.N. Chislennye metody v teorii optimal'nykh system [Numerical Methods in the Theory of Optimal Systems]. Moscow: Nauka; 1971: 424. (In Russ.)

[2] Fedorenko, R.P. Priblizhennoe reshenie zadach optimal'nogo upravleniya [Approximate Solution of Optimal Control Problems. Moscow]: Nauka; 1978: 448. (In Russ.)

[3] Gornov, A.Y. Algorithms for solving optimal control problems with phase restrictions. Computational Technologies. 2010; 15(2):24–30. (In Russ.)

[4] Gurman, V.I., Rasina, I.V., Blinov, A.O. Evolution and prospects of approximate methods of optimal control. Programmnye sistemy: teoriya i prilozheniya. 2011; 2(2):11–29. (In Russ.)

[5] Panteleev, A.V., Rybakov, K.A. Metody i algoritmy sinteza optimal'nykh stokhasticheskikh sistem upravleniya pri nepolnoy informatsii [Methods and Algorithms for Synthesis of Optimal Stochastic Control Systems With Incomplete Information]. Moscow: Izd-vo MAI; 2012: 160. (In Russ.)

[6] Panteleev, A.V. Primenenie evolyutsionnykh metodov global'noy optimizatsii v zadachakh optimal'nogo upravleniya determinirovannymi sistemami [Application of Evolutionary Global Optimization Methods for Optimal Control of Deterministic Systems]. Moscow: Izd-vo MAI; 2013: 160. (In Russ.)

[7] Solodovnikov, V.V., Semenov, V.V. Spektral'naya teoriya nestatsionarnykh sistem upravleniya [Spectral Theory of Nonstationary Control Systems]. Moscow: Nauka; 1974: 336. (In Russ.)

[8] Solodovnikov, V.V., Semenov, V.V., Peshel’, M., Nedo, D. Raschet sistem upravleniya na TsVM: spektral'nyy i interpolyatsionnyy metody [Design of Control Systems on Digital Computers: Spectral and Interpolational Methods]. Moscow: Mashinostroenie; 1979: 664. (In Russ.)

[9] Lapin S.V., Egupov N.D. Teoriya matrichnykh operatorov i ee prilozhenie k zadacham avtomaticheskogo upravleniya [The Theory of Matrix Operators and its Application to Problems of Automatic Control]. Moscow: Izd-vo MGTU im. N.E. Baumana; 1997: 496. (In Russ.)

[10] Rybakov K.A. Spectral characteristics of linear functionals and their applications to stochastic control systems analysis and synthesis. Trudy MAI. 2005; (18). (In Russ.)

[11] Panteleev A.V., Rybakov K.A. Prikladnoy veroyatnostnyy analiz nelineynykh sistem upravleniya spektral'nym metodom [Applied Probabilistic Analysis of Nonlinear Control Systems by Spectral Method]. Moscow: Izd-vo MAI-PRINT; 2010: 160. (In Russ.)

[12] Rybin V.V. Modelirovanie nestatsionarnykh nepreryvno-diskretnykh sistem upravleniya spektral'nym metodom v sistemakh komp'yuternoy matematiki [Modeling of Nonstationary Continuous-discrete Control Systems by Spectral Method on Computers]. Moscow: Izd-vo MAI; 2011: 220. (In Russ.)

[13] Rybakov K.A. Multiparameter basis to represent functions in unbounded domains. Nauchnyy vestnik MGTU GA. 2013; 195(9):45–50. (In Russ.)

[14] Rybin V.V. Modelirovanie nestatsionarnykh sistem upravleniya tselogo i drobnogo poryadka proektsionno-setochnym spektral'nym metodom [Modeling of Nonstationary Integer-order and Fractional-order Control Systems by Grid-projection Spectral Method]. Moscow: Izd-vo MAI; 2013: 160. (In Russ.)

[15] Kolmogorov A.N., Fomin S.V. Elements of the Theory of Functions and Functional Analysis. Kolmogorov A.N., Fomin S.V. Elements of the Theory of Functions and Functional Analysis. Dover Publications; 1999: 288.; 1999: 288.

[16] Golubov B., Efimov A., Skvortsov V. Walsh Series and Transforms: Theory and Applications. Kluwer Academic Publisher; 1991: 368.

[17] Alexandrov A.D. Convex Polyhedra. Berlin: Springer; 2005: 452.

[18] Preparata F.P., Shamos M. Computational Geometry: An Introduction. New York: Springer; 1985: 404.

[19] Panteleev A.V., Bortakovskiy A.S. Teoriya upravleniya v primerakh i zadachakh [The Control Theory: Examples and Problems]. Moscow: Vysshaya Shkola; 2003: 583. (In Russ.)

[20] Chernous'ko F.L. Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem [Metod ellipsoidov.Evaluation of the Phase State of Dynamic Systems. Ellipsoid Method]. Moscow: Nauka; 1988: 320. (In Russ.)



Bibliography link:
Rybakov K.A. Construction of admissible controls in spectral form of mathematical description // Computational technologies. 2015. V. 20. ¹ 3. P. 58-74
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT