Article information

2014 , Volume 19, ¹ 6, p.108-121

Epov M.I., Shurina E.P., Mikhaylova E.I.

Analysis of numerical schemes for modeling of electromagnetic field in media with contrast inclusions in a wide frequency range

Purpose. The purpose of this paper is a comparative analysis of variational formulations of the discontinuous Galerkin method (DG-method) for solution of the Helmholtz equation in a wide frequency range (from 100 kHz to 1 GHz) in a medium with contrast small inclusions of various shapes.

Methodology. The Helmholtz equation for electric field is solved on unstructured tetrahedral mesh with vector basis functions of the first order in a medium with microinclusions. The following variational formulations are considered: the conforming vector Galerkin method, the nonconforming (discontinuous) Galerkin method based on various modifications of the IP approach.

Findings. On the basis of the developed computational schemes for domains with various types of microinclusions, we analyze the wave formation process depending on the electrophysical properties of the medium and the excitation frequency of the electromagnetic field. The estimation error for the solution was obtained by various modifications of the discontinuous Galerkin method.

Originality/value. Based on the results of numerical experiments we show that the IP DG-method without averaging and the IIP DG-method (the incomplete interior penalty method) are the most effective and stable approaches in the wide frequency range. We found the irrelevance of the iterative methods for solving the discrete analogues of variational formulations of discontinuous Galerkin method (in the space H(curl,Ω )).

[full text]
Keywords: The vector finite element method, discontinuous Galerkin method, composite material, microinclusions

Author(s):
Epov Mihail Ivanovich
Dr. , Academician RAS, Professor
Position: Director
Office: A.A. Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Address: 630090, Russia, Novosibirsk, Akademika Koptyuga Prosp. 3
Phone Office: (383)330-13-81
E-mail: EpovMI@ipgg.sbras.ru
SPIN-code: 5421-0812

Shurina Ella Petrovna
Dr. , Professor
Position: General Scientist
Office: Novosibirsk State Technical University, Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Address: 630073, Russia, Novosibirsk, Karl Marx Ave. 20
Phone Office: (343) 223-72-95
E-mail: shurina@online.sinor.ru

Mikhaylova Ekaterina Igorevna
Position: Junior Research Scientist
Office: Trofimuk Institute of Petroleum Geology and Geophysics Siberian Branch of Russian Academy of Sciences
Address: 630073, Russia, Novosibirsk, 20, Prospekt K. Marksa
Phone Office: (383) 333-29-00
E-mail: mik_kat@ngs.ru
SPIN-code: 1745-6057

References:
[1] Emets Ju.P. Dispersiya dijelektricheskoj pronicaemosti trekh- i chetyrekhkomponentnykh matrichnykh sred [The dispersion of the permittivity of three- and four-component matrix media]. Zhurnal tekhnicheskoj fiziki. 2003; 73(3):42-53. (In Russ.)
[2] Butt H., Wilkinson T.D., Amaratunga G.A.J. FEM modeling of periodic arrays of multi-walled carbon nanotubes. Progress In Electromagnetics Research M. 2012; (22):1-12.
[3] Zhang Y., Cao L., Allegretto W., Lin Y. Multiscale numerical algorithm for 3D Maxwell's equations with memory effects in composite materials. Int. J. Numer. Anal. Model. Ser. A. 2011; (1):41-57.
[4] Mikhaylova E.I. Modelirovanie trekhmernogo elektromagnitnogo polya v volnovodakh slozhnoy geometrii [Modeling 3D electromagnetic fields in complex waveguiding structures]. Sbornik nauchnyh trudov NGTU. 2012; 4(70):131-136. (In Russ.)
[5] Vendik I.B., Vendik O.G. Metamaterialy i ikh primenenie v tekhnike sverkhvysokikh chastot (Obzor) [Metamaterials and their application in microwave engineering]. Zhurnal tekhnicheskoy fiziki. 2013; 83(1):3-28. (In Russ.)
[6] Ouchetto O., Zouhdi S., Bossavit A., Griso G., Miara B. Modeling of 3-D periodic multiphase composites by homogenization. Microwave Theory and Techniques, IEEE Transactions on. 2006; 54(6):2615-2619.
[7] Vinogradov A.P., Dorofeenko A.V., Zukhdi S. K voprosu ob effektivnykh parametrakh metamaterialov [On the problem of the effective parameters of metamaterials]. Uspekhi fizicheskikh nauk. 2008; 178(5):511-518. (In Russ.)
[8] Kangarlu A., Robitaille P.M.L. Biological effects and health implications in magnetic resonance imaging. Concepts in magnetic resonance. 2000; (12):321-359.
[9] Shurina E.P., Epov M.I., Shtabel N.V., Mikhaylova E.I. The Calculation of the Effective Tensor Coefficient of the Medium for the Objects with Microinclusions. Engineering. 2014; 6(3):101-112. doi: 10.4236/eng.2014.63014.
[10] Nedelec J.C. Mixed finite elements in R3. Numerische Mathematik. 1980; (35):315-341.
[11] Nedelec J.C. A new family of mixed finite elements in R3. Numerische Mathematik. 1986; (50):57-81.
[12] Schoberl J., Zaglmayr S. High order Nedelec elements with local complete sequence properties. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering. 2005; 24(2):374-384.
[13] Monk P. Finite element methods for Maxwell's equations. Oxford University: Press; 2003: 450.
[14] Antonietti P.F., Buffa A., Perugia I. Discontinuous Galerkin approximation of the Laplace eigenproblem. Computer methods in applied mechanics and engineering. 2006; (195):3483-3503.
[15] Hiptmair R., Moiola A., Perugia I. Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Mathematics of Computation. 2013; (82):247-268.
[16] Hesthaven J., Warburton T. Discontinuous Galerkin methods for the time-domain Maxwell sequations. Applied Computational Electromagnetics Society Newsletter. 2004; (19):12-30.
[17] Rapetti F., Bouillault F., Santandrea L., Buffa A., Maday Y., Razek A. Calculation of eddy currents with edge elements on non-matching grids in moving structures. Magnetics, IEEE Transactions on. 2000; 36(4):1351-1355.
[18] Dolean V., Gander M.J., Lanteri S., Lee J.F., Peng Z. Effective Transmission Conditions for Domain Decomposition Methods applied to the Time-Harmonic Curl-Curl Maxwell's equations. Journal of Computational Physics. 2015; (280):232–247.
[19] Epov M.I., Shurina E.P., Arkhipov D.A. Parallel'nye konechnoelementnye vychislitel'nye skhemy v zadachakh geoelektrik i [Parallel numerical finite elements schemes for solving of geo-electric problems]. Vychislitel'nye tekhnologii. 2013; 18(2):95-112. (In Russ.)
[20] Cockburn B., Shi K. Conditions for superconvergence of HDG methods for Stokes flow. Mathematics of Computation. 2013; 82(282):651-671.
[21] Hoteit H., Firoozabadi A. Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fractured media. Water Resources Research. 2005; 41(11): W11412.
[22] Li B.Q. Discontinuous finite elements in fluid dynamics and heat transfer. Springer. 2006; 578.
[23] Shokin Yu.I., Shurina E.P., Itkina N.B. Sovremennye mnogosetochnye metody. Chast' I. [Advanced multigrid methods. Part I.]. Mnogomasshtabnye metody : ucheb. posobie. Novosibirsk; 2010: 68.
[24] Canouet N., Fezoui L., Piperno S. Discontinuous Galerkin Time-Domain solution of Maxwell's equations on locally-refined nonconforming Cartesian grids. COMPEL. 2005; 24(4):1381-1401.
[25] Lanteri S., Scheid C. Convergence of a discontinuous Galerkin scheme for the mixed time-domain Maxwell's equations in dispersive media. IMA J Numer Anal. 2011; RR-7634:1-26.
[26] Houston P., Perugia I., Schotzau D. A review of Discontinuous Galerkin methods for Maxwell's equations in frequency-domain. ECCOMAS. 2004:1-16.
[27] Perugia I., Schotzau D. The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comp. 2003; (72):1179-1214.
[28] Houston P., Perugia I., Schotzau D. Mixed Discontinuous Galerkin Approximation of the Maxwell Operator. SIAM J. Numer. Anal. 2004; 42(1):434-459.
[29] Sarmany D. High-order finite element approximations of the Maxwell equations: Diss. University of Twente, the Netherlands; 2010: 142.
[30] Schneebeli A. Interior penalty discontinuous Galerkin methods for electromagnetic and acoustic wave equations: Diss., der Universitat Basel; 2006: 135.
[31] Houston P., Perugia I., Schutzau D. An a posteriori error indicator for discontinuous Galerkin discretizations of H (curl)-elliptic partial differential equations. IMA Journal of Numerical Analysis. 2007; 27(1):122-150.
[32] Houston P., Perugia I., Schutzau D. Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation. Journal of Scientific Computing. 2005; 22(1-3):315-346.
[33] Nechaev O.V., Shurina E.P., Botchev M.A. Multilevel iterative solvers for the edge finite element solution of the 3D Maxwell equation. Computers and mathematics with application. 2008; (55):2346-2362.
[34] Hiptmair R. Finite elements in computational electromagnetism. Acta Numerica. 2002; (11):237-339.
[35] Webb J.P. Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements. Antennas and Propagation, IEEE Transactions. 1999; (47):1244-1253.
[36] Mikhajlova E.I., Shurina E.P. Matematicheskoe modelirovanie vysokochastotnogo elektromagnitnogo polya v volnovodnyh ustrojstvakh [Mathematical modeling of the high-frequency electromagnetic field in waveguiding structures]. Vestnik NGU. Matematika, mekhanika, informatika. 2013; 13(4):102-118. (In Russ.)
[37] Yioultsis T.V., Tsiboukis T.D. Development and implementation of second and third order vector finite elements in various 3-D electromagnetic field problems. IEEE Trans. on magnetics. 1997; 33(2):1812-1815.
[38] Shurina E.P., Mikhajlova E.I. Modelirovanie elektromagnitnyh polej v garmonicheskom rezhime nekonformnymi chislennymi metodami [Simulation of electromagnetic fields in the harmonic mode using the nonconforming numerical methods].// Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov resheniya zadach matematicheskoj fiziki: Tezisy dokladov XX Vserossijskoj konferencii, posvyashh. pamyati K.I. Babenko. M.:IPM RAN; 2014: 115. (In Russ.)
[39] Fedorenko R.P. Vvedenie v vychislitel'nuyu fiziku [Introduction to Computational Physics]. M.: Izd-vo MFTI; 1994: 528. (In Russ.)
[40] Efendiev Y., Hou T.Y. Multiscale finite element methods: theory and applications. Springer, 2009: 234.

Bibliography link:
Epov M.I., Shurina E.P., Mikhaylova E.I. Analysis of numerical schemes for modeling of electromagnetic field in media with contrast inclusions in a wide frequency range // Computational technologies. 2014. V. 19. ¹ 6. P. 108-121
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT